Summary

마우스의 왼쪽 전방 내림차순 관상 동맥의 영구 결찰 : 심근 경색 리모델링과 심장 마비의 모델

Published: December 02, 2014
doi:

Summary

Heart failure is the leading cause of hospitalization and a major cause of mortality. A model of permanent ligation of the left anterior descending coronary artery in mice is applied to investigate ventricular remodelling and cardiac dysfunction post-myocardial infarction. The technique of invasive hemodynamic measurements in mice is presented.

Abstract

심장 마비는 심장이 휴식 또는 스트레스 동안 세포 산소 요구에 상응하는 속도로 혈액을 펌프에 실패하는 증후군이다. 그것은 노력에 특히 체액 저류, 호흡 곤란, 피로, 특징입니다. 심장 마비는 성장 공중 보건 문제, 입원의 주요 원인 및 사망의 주요 원인이다. 허혈성 심장 질환이 심장 기능 상실의 주요 원인이다.

심실 리모델링 좌심실의 구조, 크기 및 형태의 변화를 의미한다. 좌심실이 구조적 리모델링 (예, 전신 동맥 고혈압 또는 대동맥판 협착증), 또는 볼륨과 부하 압력 과부하에 의해 부상 (예를 들면, 심근 경색)에 의해 유도된다. 심실 벽 리모델링 응력에 영향을 받기 때문에, 이는 심장 기능에 심부전의 발전에 지대한 영향을 미친다. 왼쪽 전방 descendin의 영구 결찰 모델마우스에서 g 관상 동맥은 심실 리모델링과 심장 기능 심근 경색을 조사하는 데 사용됩니다. 이 모델은 관상 좌전 하행의 과도 결찰 모델의 비교 목적 및 병태 생리 학적 관련성의 관점에서 근본적으로 다르​​다. 허혈 / 재관류 손상의 후자의 모델에서 초기 경색의 정도는 재관류 심근 회수에 영향을 미치는 인자에 의해 조절 될 수있다. 대조적으로, 관상 좌전 하행 영구적 결찰 후 24 시간에서 경색 부분은 고정되어있다. 이 모델에서 심장 기능은 1) 경색 확장, 경색 치유 및 흉터 형성의 과정에 의해 영향을 받는다; 2) 좌심실 팽창, 심장 비대, 심실 리모델링의 수반 개발.

관상 동맥, 침습적 혈역학 MEA의 기술 좌전 하행의 영구 결찰의 모델 외에마우스의 숏 상세하게 제시된다.

Introduction

Heart failure is a syndrome in which the heart fails to pump blood at a rate commensurate with the cellular oxygen requirements at rest or during stress. It is characterized by fluid retention, shortness of breath, and fatigue, in particular on exertion. Heart failure is a growing public health problem, the leading cause of hospitalization, and a major cause of mortality. Ischemic heart disease is the main cause of heart failure1.

Ventricular remodelling refers to changes in structure, size, and shape of the left ventricle. In other words, ventricular remodelling concerns an alteration of the left ventricular architecture. This architectural remodelling of the left ventricle is induced by injury (e.g., myocardial infarction), by pressure overload (e.g., systemic arterial hypertension or aortic stenosis), or by volume overload (e.g., mitral insufficiency). Since ventricular remodelling affects wall stress, it has a profound impact on cardiac function and on the development of heart failure.

Loss of myocardial tissue following acute myocardial infarction results in a decreased systolic ejection and an increased left ventricular end-diastolic volume and pressure. The Frank-Starling mechanism, implying that an increased end-diastolic volume results in an increased pressure developed during systole, may help to restore cardiac output. However, the concomitant increased wall stress may induce regional hypertrophy in the non-infarcted segment, whereas in the infarcted area expansion and thinning may occur. Experimental animal studies show that the infarcted ventricle hypertrophies and that the degree of hypertrophy is dependent on the infarct size2.

The loss of myocardial tissue following acute myocardial infarction results in a sudden increase in loading conditions. Post-infarct remodelling occurs in the setting of volume overload, since the stretched and dilated infarcted tissue increases the left ventricular volume. An increased ventricular volume not only implies increased preload (passive ventricular wall stress at the end of diastole) but also increased afterload (total myocardial wall stress during systolic ejection). Afterload is increased since the systolic radius is increased. Therefore, ventricular remodelling post-myocardial infarction is characterized by mixed features of volume overload and pressure overload.

The myocardium consists of 3 integrated components: cardiomyocytes, extracellular matrix, and the capillary microcirculation. All 3 components are involved in the remodelling process. Matrix metalloproteinases produced by inflammatory cells induce degradation of intermyocyte collagen struts and cardiomyocyte slippage. This leads to infarct expansion characterized by the disproportionate thinning and dilatation of the infarct segment3. In later stages of remodelling, interstitial fibrosis is induced, which negatively affects the diastolic properties of the heart.

The vascular and cardiomyocyte compartment in the myocardium should remain balanced in the process of ventricular remodelling to avoid tissue hypoxia4,5. Whether hypertrophy progresses to heart failure or not may be critically dependent on this balance between the vascular and cardiomyocyte compartment in the myocardium.

A model of permanent ligation of the left anterior descending coronary artery in mice is used to investigate ventricular remodelling and cardiac function post-myocardial infarction. This model is fundamentally different in terms of objectives and pathophysiological relevance compared to the model of transient ligation of the left anterior descending coronary artery. In this latter model of ischemia/reperfusion injury, the initial extent of the infarct may be modulated by factors that affect myocardial salvage following reperfusion6. In contrast, the infarct area at 24 hours after permanent ligation of the left anterior descending coronary artery is fixed. Cardiac function in this model will be affected by 1) the process of infarct expansion, infarct healing, and scar formation; and 2) the concomitant development of left ventricular dilatation, cardiac hypertrophy, and ventricular remodelling.

Protocol

참고 :이 절에 설명 된 모든 실험 절차는 기관 동물 관리 및 Katholieke Universiteit Leuven의 연구 자문위원회에 의해 승인되었다 (프로젝트 : 2,013분의 154-B 드 기 스트). 왼쪽 앞쪽에 내림차순 관상 동맥 1. 영구 결찰 / kg의 펜 토바 비탈 나트륨 70 mg의 40 ㎎ / kg의 복강 내 투여에 의한 마우스를 마취. 더 이상 회사 발가락 핀치 반응 할 때 마우스가 마취의 적절한 비행기에 도달…

Representative Results

심근 경색의 정도는 에반스 블루 / 2,3,5- 트리 페닐 클로라이드 (TTC)을 두 번 염색에 의해 평가 될 수있다. TTC는 NADH (8)의 존재의 다양한 탈수소 효소의 활성에 의한 조직 생활에 깊은 붉은 1,3,5- triphenylformazan로 변환됩니다 산화 환원 표시입니다. (1) 24 시간 이후에 심장의 대표 섹션을 보여줍니다 관상 동맥 좌전 하행의 결찰. 블루 염색 분야는 비 허혈성 / 일반 지역…

Discussion

심근 구조 및 기능의 변화는 만성 심부전에 좌심실 기능 장애의 개발, 진행은 여러 뮤린 모델 (12)에 조사 될 수있다. 심장 리모델링 및 기능 장애는 심근 손상에 의해 유발 또는 압력에 의해 대동맥 수축을 횡단하는 보조 과부하, 또는 팽창 심근 병증 (12)의 유전 적 모델에서 조사 할 수있다 할 수있다. 물론, 쥐 모델의 가장 뚜렷한 장점은 형질 전환 및 세포 형 특정 및 유도 유전자 …

Divulgations

The authors have nothing to disclose.

Acknowledgements

This work was supported by Onderzoekstoelagen grant OT/13/090 of the KU Leuven and by grant G0A3114N of the FWO-Vlaanderen.

Materials

Reagents
Buprenorphine (Buprenex®) Bedford Laboratories
Sodium Pentobarbital (Nembutal®) Ceva
Betadine® VWR internationals 200065-400
5 – 0 silk suture Ethicon, Johnson & Johnson Medical K890H
6 – 0 prolene suture  Ethicon, Johnson & Johnson Medical F1832
6 – 0 Ti- Cron suture Ethicon, Johnson & Johnson Medical F1823
Urethane  Sigma 94300
Alconox Alconox Inc.
Equipment
Ventilator, MiniVent Model 845 Hugo Sachs 73-0043
Chest retractor or Thorax retractor Kent Scientific corporation INS600240 ALM Self-retaining, serrated, 7cm long, 4 x 4 "L" shaped prongs, 3mm x 3mm
1.0 French Millar pressure catheter  Millar Instruments  SPR – 1000/NR
Powerlab ADInstruments Pty Ltd.
LabChart® software ADInstruments Pty Ltd.
Rectal probe ADInstruments Pty Ltd.

References

  1. He, J., et al. Risk factors for congestive heart failure in US men and women: NHANES I epidemiologic follow-up study. Arch Intern Med. 161, 996-1002 (2001).
  2. Anversa, P., Sonnenblick, E. H. Ischemic cardiomyopathy: pathophysiologic mechanisms. Prog Cardiovasc Dis. 33, 49-70 (1990).
  3. Erlebacher, J. A., Weiss, J. L., Weisfeldt, M. L., Bulkley, B. H. Early dilation of the infarcted segment in acute transmural myocardial infarction: role of infarct expansion in acute left ventricular enlargement. J Am Coll Cardiol. 4, 201-208 (1984).
  4. Shimizu, I., et al. Excessive cardiac insulin signaling exacerbates systolic dysfunction induced by pressure overload in rodents. J Clin Invest. 120, 1506-1514 (2010).
  5. Tirziu, D., et al. Myocardial hypertrophy in the absence of external stimuli is induced by angiogenesis in mice. J Clin Invest. 117, 3188-3197 (2007).
  6. Theilmeier, G., et al. High-density lipoproteins and their constituent, sphingosine-1-phosphate, directly protect the heart against ischemia/reperfusion injury in vivo via the S1P3 lysophospholipid receptor. Circulation. 114, 1403-1409 (2006).
  7. Weiss, J. L., Frederiksen, J. W., Weisfeldt, M. L. Hemodynamic determinants of the time-course of fall in canine left ventricular pressure. J Clin Invest. 58, 751-760 (1976).
  8. Bohl, S., et al. Refined approach for quantification of in vivo ischemia-reperfusion injury in the mouse heart. Am J Physiol Heart Circ Physiol. 297, 2054-2058 (2009).
  9. Van Craeyveld, E., Jacobs, F., Gordts, S. C., De Geest, B. Low-density lipoprotein receptor gene transfer in hypercholesterolemic mice improves cardiac function after myocardial infarction. Gene Ther. 19, 860-871 (2012).
  10. Gordts, S. C., et al. Beneficial effects of selective HDL-raising gene transfer on survival, cardiac remodelling and cardiac function after myocardial infarction in mice. Gene Ther. 20, 1053-1061 (2013).
  11. Junqueira, L. C., Bignolas, G., Brentani, R. R. Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. Histochem J. 11, 447-455 (1979).
  12. Patten, R. D., Hall-Porter, M. R. Small animal models of heart failure: development of novel therapies, past and present. Circ Heart Fail. 2, 138-144 (2009).
  13. Zolotareva, A. G., Kogan, M. E. Production of experimental occlusive myocardial infarction in mice. Cor Vasa. 20, 308-314 (1978).
  14. Michael, L. H., et al. Myocardial ischemia and reperfusion: a murine model. Am J Physiol. 269, 2147-2154 (1995).
  15. Salto-Tellez, M., et al. Myocardial infarction in the C57BL/6J mouse: a quantifiable and highly reproducible experimental model. Cardiovasc Pathol. 13, 91-97 (2004).
  16. Fernandez, B., et al. The coronary arteries of the C57BL/6 mouse strains: implications for comparison with mutant models. J Anat. 212, 12-18 (2008).
  17. Kumar, D., et al. Distinct mouse coronary anatomy and myocardial infarction consequent to ligation. Coron Artery Dis. 16, 41-44 (2005).
  18. Clauss, S. B., Walker, D. L., Kirby, M. L., Schimel, D., Lo, C. W. Patterning of coronary arteries in wildtype and connexin43 knockout mice. Dev Dyn. 235, 2786-2794 (2006).
  19. Icardo, J. M., Colvee, E. Origin and course of the coronary arteries in normal mice and in iv/iv mice. J Anat. 199, 473-482 (2001).
  20. Yoldas, A., Ozmen, E., Ozdemir, V. Macroscopic description of the coronary arteries in Swiss albino mice (Mus musculus). J S Afr Vet Assoc. 81, 247-252 (2010).
  21. James, T. N., Burch, G. E. Blood supply of the human interventricular septum. Circulation. 17, 391-396 (1958).
  22. Gao, X. M., Xu, Q., Kiriazis, H., Dart, A. M., Du, X. J. Mouse model of post-infarct ventricular rupture: time course, strain- and gender-dependency, tensile strength, and histopathology. Cardiovasc Res. 65, 469-477 (2005).
  23. Muthuramu, I., Jacobs, F., Singh, N., Gordts, S. C., De Geest, B. Selective homocysteine lowering gene transfer improves infarct healing, attenuates remodelling, and enhances diastolic function after myocardial infarction in mice. PLoS One. 8, 63710 (2013).
  24. Eaton, L. W., Weiss, J. L., Bulkley, B. H., Garrison, J. B., Weisfeldt, M. L. Regional cardiac dilatation after acute myocardial infarction: recognition by two-dimensional echocardiography. N Engl J Med. 300, 57-62 (1979).
  25. Erlebacher, J. A., et al. Late effects of acute infarct dilation on heart size: a two dimensional echocardiographic study. Am J Cardiol. 49, 1120-1126 (1982).
  26. Schuster, E. H., Bulkley, B. H. Expansion of transmural myocardial infarction: a pathophysiologic factor in cardiac rupture. Circulation. 60, 1532-1538 (1979).
  27. Jugdutt, B. I., Michorowski, B. L. Role of infarct expansion in rupture of the ventricular septum after acute myocardial infarction: a two-dimensional echocardiographic study. Clin Cardiol. 10, 641-652 (1987).
  28. Pacher, P., Nagayama, T., Mukhopadhyay, P., Batkai, S., Kass, D. A. Measurement of cardiac function using pressure-volume conductance catheter technique in mice and rats. Nat Protoc. 3, 1422-1434 (2008).
  29. Vanden Bergh, A., Flameng, W., Herijgers, P. Parameters of ventricular contractility in mice: influence of load and sensitivity to changes in inotropic state. Pflugers Arch. 455, 987-994 (2008).
check_url/fr/52206?article_type=t&slug=permanent-ligation-left-anterior-descending-coronary-artery-mice

Play Video

Citer Cet Article
Muthuramu, I., Lox, M., Jacobs, F., De Geest, B. Permanent Ligation of the Left Anterior Descending Coronary Artery in Mice: A Model of Post-myocardial Infarction Remodelling and Heart Failure. J. Vis. Exp. (94), e52206, doi:10.3791/52206 (2014).

View Video