Summary

Выявление и анализ повреждений ДНК в клетках мышиной скелетных мышц<em> На месте</em> Использование Тюнеля метод

Published: December 16, 2014
doi:

Summary

This video describes dissection, tissue processing, sectioning, and fluorescence-based TUNEL labeling of mouse skeletal muscle. It also describes a method for semi-automated analysis of TUNEL labeling.

Abstract

Terminal deoxynucleotidyl transferase (TdT) deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL) is the method of using the TdT enzyme to covalently attach a tagged form of dUTP to 3’ ends of double- and single-stranded DNA breaks in cells. It is a reliable and useful method to detect DNA damage and cell death in situ. This video describes dissection, tissue processing, sectioning, and fluorescence-based TUNEL labeling of mouse skeletal muscle. It also describes a method of semi-automated TUNEL signal quantitation. Inherent normal tissue features and tissue processing conditions affect the ability of the TdT enzyme to efficiently label DNA. Tissue processing may also add undesirable autofluorescence that will interfere with TUNEL signal detection. Therefore, it is important to empirically determine tissue processing and TUNEL labeling methods that will yield the optimal signal-to-noise ratio for subsequent quantitation. The fluorescence-based assay described here provides a way to exclude autofluorescent signal by digital channel subtraction. The TUNEL assay, used with appropriate tissue processing techniques and controls, is a relatively fast, reproducible, quantitative method for detecting apoptosis in tissue. It can be used to confirm DNA damage and apoptosis as pathological mechanisms, to identify affected cell types, and to assess the efficacy of therapeutic treatments in vivo.

Introduction

Терминал дезоксинуклеотидтрансферазу (TdT) дУТФ ник конец маркировка (TUNEL) является процесс с использованием фермента TdT приложить дУТФ к 3 'концах дважды и одноцепочечной ДНК разрушает 12,23. Метод TUNEL для обнаружения апоптоза и повреждения ДНК впервые было сообщено в течение 20 лет назад Gavrieli и др. 1,12,24. С тех пор были оценены и оптимизированы в различных тканевых препаратов 7,23,27,40. TUNEL был использован для изучения ишемии-индуцированной гибели клеток нейронов 6,14,29 и кардиомиоциты 43,44, эксайтотоксический нейронов гибель клеток 30,31, и в качестве биомаркера в лечении артрита 39. Он также используется в качестве прогностического фактора и опухолевых клеток маркера в различных человеческих раковых 2,3,15,32,37,38,42.

Существуют альтернативные методы для повреждения ДНК и обнаружения гибели клеток, но они имеют технические проблемы и подводные камни. Саузерн-блоттинг может использоваться для quantifу повреждение ДНК в целом лизатов ткани 7,9-11, но этот метод не дает разрешение сотовой уровня и трудно поддаются количественной оценке. Кометы анализ является альтернативным способом на основе клеток, что требуется извлечение сохранившиеся ядра из клеток 4,20,28,36. Хотя комет хорошо работает на культивируемых изолированных клеток, это гораздо сложнее подготовить нетронутыми ядра от скелетной мышечной ткани 8,21. Как Саузерну, комет не дает типов клеток конкретную информацию от целого мышечной ткани гомогенате. Другой альтернативой способу TUNEL является иммуногистохимии с использованием антител против одноцепочечной ДНК 25,33,41 или против белков, участвующих в ответ повреждение ДНК и гибели клеток путей (например, р53, H2AX и каспазы) 13,17,22,40. Такие методы на основе антител требует тщательного характеристику антител и отличную специфичность антител с получением высокого отношения сигнал-фон. Даже тогда, когда спецификациисуществуют БР антитела, они могут потребовать денатурации белка-мишени в соответствии с процедурами поисковых антиген 34,35. Когда мы будем обсуждать здесь, антиген поиска в результатах мышечной ткани неприемлемо высокой флуоресценции. В отличие от альтернативных методов, TUNEL достигает обнаружение повреждений ДНК с высоким отношением сигнал и низким уровнем фона, отличную специфичность, которые могут быть проверены с помощью простых положительных и отрицательных контролей, хорошее проникновения в ткани, которые не требуют извлечения антигена, а разрешение сотовой уровня. Кроме того, метод TUNEL занимает около 4 часов, чтобы закончить, в то время как альтернативные методы, как правило, требуют ночные инкубации.

Мы изучаем скелетных смерть мышечных клеток в мышиной модели спинальной мышечной атрофии (SMA) 10, которая была сгенерирована Се-Li и его коллеги 16. Для количественной оценки апоптоза клетки в мышцы, мы разработали способ получения тканей, окрашивания и количественного который работает энергично через другой ШкелеTal группы мышц в различных развития временных точках мышей. Мы используем имеющийся в продаже TUNEL-маркировки комплект и коммерчески доступного программного обеспечения для анализа изображений. Мы также успешно использовали анализ TUNEL в комбинации с иммунофлуоресцентного окрашивания в спинном мозге 10.

Методы, описанные здесь, являются полезными для исследователей, которые хотят, чтобы оценить тканей патологии, механизмы заболевания, механизмы старения и развития (пре- и послеродовой) гибель клеток в скелетных мышцах. Методика TUNEL особенно полезно для исследований повреждений ДНК и ремонт и клеточной смерти в модельных системах, где только часть клеток зависит и клеточная разрешения уровня необходимо.

Это видео описывает вскрытие, обработки тканей, секционирование и флуоресценции основе TUNEL маркировки мыши скелетных мышц. Он также описывает способ полуавтоматического TUNEL сигнала количественного определения.

Protocol

ПРИМЕЧАНИЕ: Все процедуры на животных, описанные в этом протоколе были проведены в соответствии с рекомендациями, приведенными в руководстве по уходу и использованию лабораторных животных Национальных институтов здравоохранения 26. Протокол (MO13M391) был одобрен Комитетом Уни…

Representative Results

С успешной окрашивания TUNEL-позитивный сигнал должен быть достаточно ярким, чтобы изолировать автофлюоресценции, установив пороги интенсивности. TUNEL-позитивные объекты на малом увеличении может отображаться в виде ярких нерегулярные фрагменты в скелетных мышцах (рис 1А). Тем н…

Discussion

Метод обнаружения и количественного анализа повреждений ДНК, ассоциированных с апоптоз в клетках мышиной скелетных мышцах описано. Процедура включает в себя сбор тканей, окрашивание TUNEL, цифровой захвата изображений и анализа изображений. Общие гистологические материалы и инструмен?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

This work was supported by NIH-NINDS grant RO1-NS065895 and NIH-NINDS grant 5-F31-NS076250-02.

We thank JHU SOM Microscope Facility for the use of the cryostat.

Materials

Name of Reagent/ Equipment Company Catalog Number Comments/Description
4% Paraformaldehyde in phosphate buffered saline Electron Microscopy Sciences 19202 For procedures described here, 4% solution was prepared fresh from powder. Paraformaldehyde from any supplier may be used. Prepared formaldehyde solution should be stored at 4 °C and should not be used after its expiration date (up to several months). Paraformaldehyde is a carcinogen and a toxin by inhalation and skin contact. Please follow precautions specified in the MSDS when handling paraformaldehyde.
Sucrose Sigma S0389 Used for cryoprotecting tissue before freezing. Sucrose from any supplier may be used.
O.C.T. compound  Tissue-Tek 4583 Embedding medium for cryosectioning.
Cryostat Leica CM 3050S A Leica CM3050S cryostat was used for the preparations described here. Any cryostat capable of cutting 10 μm sections may be used.
Glass slides, 25 x 75 x 1 mm Fisher 12-552-3 Slides from any supplier may be used.
Gelatin Sigma G-9391 Gelatin is used to promote tissue section adhesion to glass slides. To coat glass slides with gelatin, dissolve 2.75 g gelatin and 0.275 g chrome alum in 500 mL distilled water, warm to 60 °C, dip slides for several seconds, and let dry. Gelatin from any supplier may be used. Alternatively, gelatin-precoated slides may be purchased.
Chromium(III) potassium sulfate dodecahydrate (chrome alum) Sigma 243361 Chrome alum is added to gelatin solution to promote tissue adhesion on glass slides. It is a possible carcinogen and a toxin by inhalation and skin contact. Please follow precautions specified in the MSDS when handling chrome alum.
Vectabond tissue adhesion reagent Vector Labs SP-1800 Optional substrate for better tissue adhesion to glass slides; gellatin-coated slides may be used instead.
Tween20 Sigma P9416 A detergent used to permeabilize tissue. Tween20 from any supplier may be used.
Triton X100 Sigma T8787 A detergent used to permeabilize tissue. Triton X100 from any supplier may be used.
TACS 2 TdT fluorescein in situ apoptosis detection kit Trevigen 4812-30-K Commercial kit for fluorescence-based TUNEL labeling.
DNase/nuclease Trevigen 4812-30-K (included with kit)
DNase/nuclease buffer Trevigen 4812-30-K (included with kit)
10x phosphate buffered saline (PBS), pH 7.4 Amresco 780 Make 1x PBS for washes and dilutions. PBS from any supplier may be used.
DNase-free water Quality Biologicals 351-029-131 Water from any supplier may be used.
Hoechst 33258 Sigma 94403 Nuclear dye. Any blue fluorescent nuclear dye may be used. As a DNA-binding dye, Hoechst is a suspected carcinogen and should be handled with protective equipment to minimize skin contact.
Parafilm M multiple 807 Any other hydrophobic film or cover slip may be used. Available from multiple suppliers. 
Fluorescent microscope with digital camera  –  – Any fluorescent microscope capable of digitally capturing red, green, and blue fluorescence in separate channels may be used.
Vectashield antifade media Vector Labs H-1000 Antifade media from any supplier may be used.
glass coverslips, No.1 thickness Brain Research Labs 2222-1 Cover slips from any supplier may be used. The smallest size of 22×22 mm is sufficient for neonatal mouse leg sections.
Nail polish Ted Pella 114-8 Used to seal coverslips. Nail polish from any supplier (including regular retailers) may be used. Avoid using nail polish with color or additives that may reflect light during fluorescent imaging. 

References

  1. Ansari, B., Coates, P. J., Greenstein, B. D., Hall, P. A. In situ end-labelling detects DNA strand breaks in apoptosis and other physiological and pathological states. 170 (1), 1-8 (1993).
  2. Ben-Izhak, O., Laster, Z., Akrish, S., Cohen, G., Nagler, R. M. TUNEL as a tumor marker of tongue cancer. Anticancer Res. 28 (5B), 2981-2986 (2008).
  3. Colecchia, M., et al. Detection of apoptosis by the TUNEL technique in clinically localised prostatic cancer before and after combined endocrine therapy. 50 (5), 384-388 (1997).
  4. Collins, A. R. The comet assay for DNA damage and repair: principles, applications, and limitations. Mol. Biotechnol. 26 (3), 249-261 (2004).
  5. Delaurier, A., et al. The Mouse Limb Anatomy Atlas: an interactive 3D tool for studying embryonic limb patterning. 8, 83 (2008).
  6. Torres, C., Munell, F., Ferrer, I., Reventos, J., Macaya, A. Identification of necrotic cell death by the TUNEL assay in the hypoxic-ischemic neonatal rat brain. Neurosci. Lett. 230 (1), 1-4 (1997).
  7. Didenko, V. V. . In Situ Detection of DNA Damage : Methods and Protocols. , 978-970 (2002).
  8. Edelman, J. C., Edelman, P. M., Kniggee, K. M., Schwartz, I. L. Isolation of skeletal muscle nuclei. J. Cell Biol. 27 (2), 365-378 (1965).
  9. Facchinetti, A., Tessarollo, L., Mazzocchi, M., Kingston, R., Collavo, D., Biasi, G. An improved method for the detection of DNA fragmentation. J. Immunol. Methods. 136 (1), 125-131 (1991).
  10. Fayzullina, S., Martin, L. J. Skeletal muscle DNA damage precedes spinal motor neuron DNA damage in a mouse model of spinal muscular atrophy (SMA). PLoS.One. 9 (3), e93329 (2014).
  11. Ferrer, I., et al. Naturally occurring cell death in the developing cerebral cortex of the rat. Evidence of apoptosis-associated internucleosomal DNA fragmentation. Neurosci. Lett. 182 (1), 77-79 (1994).
  12. Gavrieli, Y., Sherman, Y., Ben-Sasson, S. A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119 (3), 493-501 (1992).
  13. Gown, A. M., Willingham, M. C. Improved detection of apoptotic cells in archival paraffin sections: immunohistochemistry using antibodies to cleaved caspase 3. J. Histochem. Cytochem. 50 (4), 449-454 (2002).
  14. Hara, A., et al. Neuronal apoptosis studied by a sequential TUNEL technique: a method for tract-tracing. Brain Res. Brain Res. Protoc. 4 (2), 140-146 (1999).
  15. Harn, H. J., et al. Apoptosis occurs more frequently in intraductal carcinoma than in infiltrating duct carcinoma of human breast cancer and correlates with altered p53 expression: detected by terminal-deoxynucleotidyl-transferase-mediated dUTP-FITC nick end labelling (TUNEL). Histopathology. 31 (6), 534-539 (1997).
  16. Hsieh-Li, H. M., et al. A mouse model for spinal muscular atrophy. Nat. Genet. 24 (1), 66-70 (2000).
  17. Huerta, S., Goulet, E. J., Huerta-Yepez, S., Livingston, E. H. Screening and detection of apoptosis. J. Surg. Res. 139 (1), 143-156 (2007).
  18. Iwaki, T., Yamashita, H., Hayakawa, T. A color atlas of sectional anatomy of the mouse. 1, (2001).
  19. Kaufman, M. H. . The atlas of mouse development. , (1992).
  20. Koppen, G., Angelis, K. J. Repair of X-ray induced DNA damage measured by the comet assay in roots of Vicia faba. Environ. Mol. Mutagen. 32 (2), 281-285 (1998).
  21. Kuehl, L. Isolation of skeletal muscle nuclei. Methods Cell Biol. 15, 79-88 (1977).
  22. Kuo, L. J., Yang, L. X. Gamma-H2AX – a novel biomarker for DNA double-strand breaks. In Vivo. 22 (3), 305-309 (2008).
  23. Labat-Moleur, F., et al. TUNEL apoptotic cell detection in tissue sections: critical evaluation and improvement. J. Histochem. Cytochem. 46 (3), 327-334 (1998).
  24. Modak, S. P., Bollum, F. J. Detection and measurement of single-strand breaks in nuclear DNA in fixed lens sections. Exp. Cell Res. 75 (2), 307-313 (1972).
  25. Naruse, I., Keino, H., Kawarada, Y. Antibody against single-stranded DNA detects both programmed cell death and drug-induced apoptosis. Histochemistry. 101 (1), 73-78 (1994).
  26. . National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals. , (2011).
  27. Negoescu, A., et al. In situ apoptotic cell labeling by the TUNEL method: improvement and evaluation on cell preparations). J. Histochem. Cytochem. 44 (9), 959-968 (1996).
  28. Ostling, O., Johanson, K. J. Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem. Biophys. Res. Commun. 123 (1), 291-298 (1984).
  29. Phanithi, P. B., Yoshida, Y., Santana, A., Su, M., Kawamura, S., Yasui, N. Mild hypothermia mitigates post-ischemic neuronal death following focal cerebral ischemia in rat brain: immunohistochemical study of Fas, caspase-3 and TUNEL. Neuropathology. 20 (4), 273-282 (2000).
  30. Portera-Cailliau, C., Price, D. L., Martin, L. J. Excitotoxic neuronal death in the immature brain is an apoptosis-necrosis morphological continuum. J. Comp Neurol. 378 (1), 70-87 (1997).
  31. Portera-Cailliau, C., Price, D. L., Martin, L. J. Non-NMDA and NMDA receptor-mediated excitotoxic neuronal deaths in adult brain are morphologically distinct: further evidence for an apoptosis-necrosis continuum. J. Comp Neurol. 378 (1), 88-104 (1997).
  32. Ravi, D., Ramadas, K., Mathew, B. S., Nalinakumari, K. R., Nair, M. K., Pillai, M. R. De novo programmed cell death in oral cancer. Histopathology. 34 (3), 241-249 (1999).
  33. Sakaki, T., Kohmura, E., Kishiguchi, T., Yuguchi, T., Yamashita, T., Hayakawa, T. Loss and apoptosis of smooth muscle cells in intracranial aneurysms. Studies with in situ DNA end labeling and antibody against single-stranded DNA. Acta Neurochir.(Wien). 139 (5), 469-474 (1997).
  34. Shi, S. R., Cote, R. J., Taylor, C. R. Antigen retrieval immunohistochemistry: past, present, and future. J. Histochem. Cytochem. 45 (3), 327-343 (1997).
  35. Shi, S. R., Imam, S. A., Young, L., Cote, R. J., Taylor, C. R. Antigen retrieval immunohistochemistry under the influence of pH using monoclonal antibodies. J. Histochem. Cytochem. 43 (2), 193-201 (1995).
  36. Singh, N. P., McCoy, M. T., Tice, R. R., Schneider, E. L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 175 (1), 184-191 (1988).
  37. Sirvent, J. J., Aguilar, M. C., Olona, M., Pelegri, A., Blazquez, S., Gutierrez, C. Prognostic value of apoptosis in breast cancer pT1-pT2). A TUNEL, p53, bcl-2, bag-1 and Bax immunohistochemical study. Histol.Histopathol. 19 (3), 759-770 (2004).
  38. Skyrlas, A., Hantschke, M., Passa, V., Gaitanis, G., Malamou-Mitsi, V., Bassukas, I. D. Expression of apoptosis-inducing factor (AIF) in keratoacanthomas and squamous cell carcinomas of the skin. Exp. Dermatol. 20 (8), 674-676 (2011).
  39. Smith, M. D., Weedon, H., Papangelis, V., Walker, J., Roberts-Thomson, P. J., Ahern, M. J. Apoptosis in the rheumatoid arthritis synovial membrane: modulation by disease-modifying anti-rheumatic drug treatment. Rheumatology.(Oxford). 49 (5), 862-875 (2010).
  40. Stadelmann, C., Lassmann, H. Detection of apoptosis in tissue sections). Cell Tissue Res. 301 (1), 19-31 (2000).
  41. Schans, G. P., van Loon, A. A., Groenendijk, R. H., Baan, R. A. Detection of DNA damage in cells exposed to ionizing radiation by use of anti-single-stranded DNA monoclonal antibody. Int. J. Radiat. Biol. 55 (5), 747-760 (1989).
  42. Watanabe, I., et al. Detection of apoptotic cells in human colorectal cancer by two different in situ methods: antibody against single-stranded DNA and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL) methods. Jpn. J. Cancer Res. 90 (2), 188-193 (1999).
  43. Watanabe, T., et al. Apoptosis signal-regulating kinase 1 is involved not only in apoptosis but also in non-apoptotic cardiomyocyte death. Biochem. Biophys. Res. Commun. 333 (2), 562-567 (2005).
  44. Yaoita, H., Ogawa, K., Maehara, K., Maruyama, Y. Attenuation of ischemia/reperfusion injury in rats by a caspase inhibitor. Circulation. 97 (3), 276-281 (1998).
check_url/fr/52211?article_type=t

Play Video

Citer Cet Article
Fayzullina, S., Martin, L. J. Detection and Analysis of DNA Damage in Mouse Skeletal Muscle In Situ Using the TUNEL Method. J. Vis. Exp. (94), e52211, doi:10.3791/52211 (2014).

View Video