Summary

小型低聚物形成膜蛋白的沉降平衡:组氨酸质子对五聚体稳定性

Published: April 02, 2015
doi:

Summary

Sedimentation equilibrium (SE) can be used to study protein-protein interactions in a physiological environment. This manuscript describes the use of this technique to determine the effect of pH on the stability of a homo-pentamer formed by the small hydrophobic (SH) protein encoded by the human syncytial respiratory virus (hRSV).

Abstract

分析超速离心(AUC),可用于研究大分子之间可逆的相互作用在宽范围的相互作用的优势和在生理条件下。这使得AUC选择的方法,以定量评估化学计量学和同和异的关联是短暂的,可逆的生化过程的热力学。在沉降平衡的模态(SE),扩散和沉淀之间的平衡提供了一种简档作为径向距离的函数的依赖于特定的关联模型。这里,详细的SE协议被描述来确定一个小的膜蛋白低聚物,使用分析超速离心机的大小和单体 – 单体关联的能量。 AUC-ES是无标记,仅根据物理原理,并能在两个水溶性和膜蛋白可以使用。一个例子示出了后者的,小疏水(SH)在人呼吸道合胞病毒的蛋白质(hRSV的),一个65个氨基酸的多肽与单个α螺旋跨膜(TM)结构域,其形成五聚体离子通道。基于NMR的结构数据显示,SH蛋白具有在其跨膜结构域2质子化His残基被定向朝向所述通道的内腔。 SE试验的目的是为了确定如何pH值影响缔合常数和SH蛋白的寡聚大小。而五聚体形式在所有的情况下保存,其缔合常数降低在低pH值。这些数据与观察SH通道活性类似的pH依赖性,在SH蛋白两种氨酸残基的腔的方向一致的协议。后者可在低pH值会遇到的静电斥力和降低的低聚物的稳定性。总之,这种方法适用于每当在生理条件微妙的蛋白质 – 蛋白质关联的变化的定量信息必须被测量。

Introduction

分析超速离心1-5是研究大分子相互作用的生理条件下,被访问既弱相互作用和强相互作用中最重要的方法之一。该方法是无标记,并使用光的吸收或干扰,并且甚至荧光光学系统可用于多级6几个数量访问浓度范围。

因为大多数生化过程取决于可逆的相互作用,此方法特别有用。这些相互作用的化学计量和强度必须被定量表征理解生物过程,以及用于此目的7,8许多方法存在的。然而,瞬时相互作用是难以研究9。

一个方法的选择来表征大分子相互作用取决于它的静态或动态性质。在第一种情况下,sedim entation速度(SV)的情况下,其中的径向传输的速率测量和复合物分馏的浮力质量和形状的差异的基础上。

与此相反,动态连接是可逆的实验的时间尺度,不能物理地分离。在这种情况下,自或杂相互作用导致的非共价相互作用以依赖于总蛋白浓度的平衡。这些动态的相互作用可以通过两个沉降平衡(SE)和沉降速度(SV)10进行研究。然而,第一种方法是简单地履行和这里进行说明。在SE,离心是在足够低的速度进行,使得扩散和沉淀之间达到平衡。在这一点上,一个光信号(UV-VIS)的作为径向距离的函数的平衡轮廓,可以使用预先设定的热力学模型协会11进行分析。

ve_content“>在本文件中,一个沉降平衡研究,提出一种病毒的膜蛋白,其形成由于其疏水性的离子通道。的自缔合的,实验运行在洗涤剂的存在下,以及在这种情况下,密度溶剂具有被匹配到该洗涤剂的,但是,该协议描述中的水溶性蛋白的情况下将是相同的,所不同的是将需要无溶剂的密度匹配。

使用的蛋白质被编码在人呼吸道合胞病毒(hRSV的),在副粘病毒科,导致下呼吸道疾病的婴幼儿,老年人和免疫受损人群全世界12有包膜肺病毒。每年高达6400万报hRSV的感染病例和16万死亡病例发生。

的hRSV的基因组转录11蛋白,包括三个膜蛋白F,G和小疏水性(SH)。 SH蛋白参与在RSV感染的发病机制。 RSV缺乏的SH基因(RSVΔSH)是可行的,导致形成合胞体和生长以及野生型(WT)病毒13-16。然而,RSVΔSH病毒复制在上呼吸道15,16 10倍效率较低比WT上。另外,RSVΔSH病毒减毒在体内小鼠和黑猩猩模型13,17。

该SH蛋白是64(RSV亚组A)或65(RSV亚组B)氨基酸长II型整合膜蛋白的积累主要是在高尔基体18的膜。 SH蛋白具有单个预测α-螺旋跨膜(TM)结构域19,其高度保守20,21。的C-和N-末端膜外结构域被定向lumenally /细胞外和细胞质,分别。

两个合成TM结构域(残基18-43)和全长的SH蛋白已经显示出,以形成在各种洗涤剂homopentamers。该homopentameric形式是负责平面脂质双层22,23通道活动。首先确定使用位点特异性的红外二色性23,其显示的His-22是在一个腔,靠近跨螺旋,取向在脂双层对TM单体的正确方向。相同的TM域取向用NMR研究,重建了五聚体的全长蛋白质的α-螺旋束中dodecylphosphocholine(DPC)胶束22证实。在这种“胶团”的模式中,单个的α-螺旋TM结构域侧翼的N-末端由一个螺旋,和C末端由一个扩展B-发夹。 SH蛋白的两个质子化的残基,的His-22和的His-51,分别位于在TM结构域(lumenally取向),并且在膜外C末端β发夹的尖端(远离通道孔),分别为。在一个bicellar ENVIRO的联邦政府,但是,对TMα螺旋延伸到的His-51,并且两个His残基可访问的信道24的内腔中。该信道结构采用漏斗状结构22,其中,窄的区域(丝氨酸29至Cys-45)22衬有疏水性侧链(岛-32,岛-36,岛-40和Leu-44),并ILE-36限定在通道管腔最窄处。他-22位于该漏斗的最大开口,而他的-51是在最小的开口的前端。

在本文件中,在一个沉降平衡模式分析离心已被用来确定是否他质子影响的SH蛋白五聚体的稳定性。在这种情况下,SH蛋白溶解于C 14甜菜碱洗涤剂,其先前已用于显示的SH蛋白形式的五聚体的低聚物22。

Protocol

该协议是基于以下资源,这是被称为详细信息,并特别注意事项3,25-28。 洗涤剂胶束2小时 2 O 1.密度匹配注意:该缓冲溶液的密度必须匹配于去污剂胶束的密度。常见的密度调节剂包括2 H 2 O,H 2 18 O,2 H 2 18 O,甘油和蔗糖29。的H 2 18 O具有相同的密度…

Representative Results

的C14SB去污剂胶束的径向分布曲线在50mM Tris,100mM NaCl的pH为7.3的形式,可以被安装到一个线性模型( 图7A)一个很浅的指数。这种分布的斜率成反比关系到D 2 O中的浓度( 图7B)。的点的斜率是零, 也就是,匹配D 2 O中的浓度,结果为32.3%。 参见图7所示。 相同的实验重复进行不同…

Discussion

本文提供了一个实验方案样品制备和使用均衡沉降的小膜蛋白的洗涤剂齐聚分析。所描述的协议是同样有效-and simpler-为可溶性蛋白,作为密度匹配步骤是不需要的。实际上,该系统是由洗涤剂和蛋白质的混合​​物构成。进行沉降研究,该洗涤剂必须是不可见的引力场,使得它不向粒子浮选。因此,洗涤剂的密度,必须仔细地通过加入D 2 O中的到缓冲匹配,与限制,即如果所使用的洗涤?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

This work has been funded by the National Research Foundation grant NRF-CRP4-2008-02 (J.T.) and Tier 1 grant RG 51/13.

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description
3-(N,N-dimethylmyristylammonio)propanesulfonate Sigma T0807
Deuterium oxide 99.8% Cambridge Isotope DLM-4-99.8
An-50 Ti Rotor, Analytical, 8-Place Beckman Coulter 363782
An-60 Ti Rotor, Analytical, 4-Place Beckman Coulter 361964
Cell housing Beckman Coulter 334784
12 mm six-channel centerpiece, epon charcoal-filled Beckman Coulter 331376
Window holder Beckman Coulter 305037
Window gasket Beckman Coulter 327021
Window liner Beckman Coulter 362329
Sapphire window Beckman Coulter 307177
Quartz window Beckman Coulter 301730
Screw-ring washer Beckman Coulter 362328
Screw ring Beckman Coulter 301922
Spinkote Beckman Coulter 306812
Torque stand assembly Beckman Coulter 361318
Counterbalance Beckman Coulter 360219
Cell alignment tool Beckman Coulter 362340
SEDNTERP http://bitcwiki.sr.unh.edu/index.php/Main_Page
HeteroAnalysis  http://www.biotech.uconn.edu/auf/?i=aufftp
SEDFIT http://www.analyticalultracentrifugation
.com/sedfit.htm
SEDPHAT http://www.analyticalultracentrifugation
.com/sedphat/default.htm

References

  1. Laue, T. M., Stafford, W. F. Modern applications of analytical ultracentrifugation. Annu. Rev. Biophys. Biomol. Struct. 28, 75-100 (1999).
  2. Lebowitz, J., Lewis, M. S., Schuck, P. Modern analytical ultracentrifugation in protein science: A tutorial review. Protein Sci. 11, 2067-2079 (2002).
  3. Balbo, A., Zhao, H., Brown, P. H., Schuck, P. . Assembly, Loading, and Alignment of an Analytical Ultracentrifuge Sample Cell. , e1530 (2009).
  4. Rivas, G., Stafford, W., Minton, A. P. Characterization of heterologous protein-protein interactions using analytical ultracentrifugation. Methods-a Companion to Methods in Enzymology. 19, 194-212 (1999).
  5. Howlett, G. J., Minton, A. P., Rivas, G. Analytical ultracentrifugation for association and assembly the study of protein. Curr. Opin. Chem. Biol. 10, 430-436 (2006).
  6. MacGregor, I. K., Anderson, A. L., Laue, T. M. Fluorescence detection for the XLI analytical ultracentrifuge. Biophys. Chem. 108, 165-185 (2004).
  7. Phizicky, E. M., Fields, S. Protein-Protein Interactions – Methods for Detection and Analysis. Microbiol. Rev. 59, 94-123 (1995).
  8. Alexandrov, A. A facile method for high-throughput co-expression of protein pairs. Mol. Cell. Proteomics. 3, 934-938 (2004).
  9. Nooren, I. M. A., Thornton, J. M. Structural characterisation and functional significance of transient protein-protein interactions. J. Mol. Biol. 325, 991-1018 (2003).
  10. Ebel, C. Sedimentation velocity to characterize surfactants and solubilized membrane proteins. Methods. 54, 56-66 (2011).
  11. Minton, A. P. Quantitative characterization of reversible macromolecular associations via sedimentation equilibrium: an introduction. Exp. Mol. Med. 32, 1-5 (2000).
  12. Dowell, S. F. Respiratory syncytial virus is an important cause of community-acquired lower respiratory infection among hospitalized adults. J. Infect. Dis. 174, 456-462 (1996).
  13. Bukreyev, A., Whitehead, S. S., Murphy, B. R., Collins, P. L. Recombinant respiratory syncytial virus from which the entire SH gene has been deleted grows efficiently in cell culture and exhibits site-specific attenuation in the respiratory tract of the mouse. J. Virol. 71, 8973-8982 (1997).
  14. Fuentes, S., Tran, K. C., Luthra, P., Teng, M. N., He, B. Function of the respiratory syncytial virus small hydrophobic protein. J. Virol. 81, 8361-8366 (2007).
  15. Jin, H. Recombinant respiratory syncytial viruses with deletions in the NS1, NS2, SH, and M2-2 genes are attenuated in vitro and in vivo. Virology. 273, 210-218 (2000).
  16. Karron, R. A. Respiratory syncytial virus (RSV) SH and G proteins are not essential for viral replication in vitro: clinical evaluation and molecular characterization of a cold-passaged, attenuated RSV subgroup B. Proc. Nat. Acad. Sci. USA. 94, 13961-13966 (1997).
  17. Whitehead, S. S. Recombinant respiratory syncytial virus bearing a deletion of either the NS2 or SH gene is attenuated in chimpanzees. J. Virol. 73, 3438-3442 (1999).
  18. Rixon, H. W. The small hydrophobic (SH) protein accumulates within lipid-raft structures of the Golgi complex during respiratory syncytial virus infection. J. Gen. Virol. 85, 1153-1165 (2004).
  19. Collins, P. L., Mottet, G. Membrane orientation and oligomerization of the small hydrophobic protein of human respiratory syncytial virus. J. Gen. Virol. 74, 1445-1450 (1993).
  20. Collins, P. L., Olmsted, R. A., Johnson, P. R. The small hydrophobic protein of human respiratory syncytial virus: comparison between antigenic subgroups A and B. J. Gen. Virol. 71, 1571-1576 (1990).
  21. Chen, M. D., Vazquez, M., Buonocore, L., Kahn, J. S. Conservation of the respiratory syncytial virus SH gene. J. Infect. Dis. 182, 1228-1233 (2000).
  22. Gan, S. W. The small hydrophobic protein of the human respiratory syncytial virus forms pentameric ion channels. J. Biol. Chem. 287, 24671-24689 (2012).
  23. Gan, S. W., Ng, L., Xin, L., Gong, X., Torres, J. Structure and ion channel activity of the human respiratory syncytial virus (hRSV) small hydrophobic protein transmembrane domain. Protein Sci. 17, 813-820 (2008).
  24. Li, Y. Inhibition of the Human Respiratory Syncytial Virus Small Hydrophobic Protein and Structural variations in a bicelle environment. J. Virol. 88 (22), 11899-914 (2014).
  25. Burgess, N. K., Stanley, A. M., Fleming, K. G. Determination of membrane protein molecular weights and association equilibrium constants using sedimentation equilibrium and sedimentation velocity. Meth. Cell. Biol. 84, 181-211 (2008).
  26. Cole, J. L., Lary, J. W., Moody, T. P., Laue, T. M. Analytical Ultracentrifugation: Sedimentation Velocity and Sedimentation Equilibrium. Meth. Cell. Biol. 84, 143-179 (2008).
  27. Fleming, K. G. Determination of membrane protein molecular weight using sedimentation equilibrium analytical ultracentrifugation. Curr. Protoc. Prot. Sci. 53, 17.12.11-17.12.13 (2008).
  28. . . An-50 Ti and An-60 Ti Analytical Rotor, Cells, and Counterbalance. , (2005).
  29. Mayer, G. Studying membrane proteins in detergent solution by analytical ultracentrifugation: Different methods for density matching. Prog. Colloid Polym. Sci. 113, 176-181 (1999).
  30. Laue, T. Ch. 20.3. Current Protocols in Protein Science. 20, 20.23.21-20.23.13 (2001).
  31. Gan, S. W. The Small Hydrophobic Protein Of The Human Respiratory Syncytial Virus Forms Pentameric Ion Channels. J. Biol. Chem. 287, 24671-24689 (2012).
  32. Bevington, P. R., Robinson, D. K. . Data reduction and error analysis for the physical sciences. 336, (1969).
  33. Schuck, P., Radu, C. G., Ward, E. S. Sedimentation equilibrium analysis of recombinant mouse FcRn with murine IgG1. Molecular Immunology. 36, 1117-1125 (1999).
  34. Gan, S. W., Vararattanavech, A., Nordin, N., Eshaghi, S., Torres, J. A cost-effective method for simultaneous homo-oligomeric size determination and monodispersity conditions for membrane proteins. Anal. Biochem. 416, 100-106 (2011).
  35. Montserret, R. NMR structure and ion channel activity of the p7 protein from hepatitis C virus). J. Biol. Chem. 285, 31446-31461 (2010).
  36. Stouffer, A. L., DeGrado, W. F., Lear, J. D. Analytical Ultracentrifugation Studies of the Influenza M2 Homotetramerization Equilibrium in Detergent Solutions. Progr Colloid Polym Sci. 131, 108-115 (2006).
  37. Sorkin, A., von Zastrow, M. Signal transduction and endocytosis: Close encounters of many kinds. Nat. Rev. Mol. Cell Biol. 3, 600-614 (2002).
  38. Gan, S. W., Ng, L., Lin, X., Gong, X., Torres, J. Structure and ion channel activity of the human respiratory syncytial virus (hRSV) small hydrophobic protein transmembrane domain. Protein science : a publication of the Protein Society. 17, 813-820 (2008).
check_url/fr/52404?article_type=t

Play Video

Citer Cet Article
Surya, W., Torres, J. Sedimentation Equilibrium of a Small Oligomer-forming Membrane Protein: Effect of Histidine Protonation on Pentameric Stability. J. Vis. Exp. (98), e52404, doi:10.3791/52404 (2015).

View Video