Summary

三维全层皮肤的生成等效和自动伤人

Published: February 26, 2015
doi:

Summary

The goal of this protocol is to build up a three-dimensional full thickness skin equivalent, which resembles natural skin. With a specifically constructed automated wounding device, precise and reproducible wounds can be generated under maintenance of sterility.

Abstract

In vitro models are a cost effective and ethical alternative to study cutaneous wound healing processes. Moreover, by using human cells, these models reflect the human wound situation better than animal models. Although two-dimensional models are widely used to investigate processes such as cellular migration and proliferation, models that are more complex are required to gain a deeper knowledge about wound healing. Besides a suitable model system, the generation of precise and reproducible wounds is crucial to ensure comparable results between different test runs. In this study, the generation of a three-dimensional full thickness skin equivalent to study wound healing is shown. The dermal part of the models is comprised of human dermal fibroblast embedded in a rat-tail collagen type I hydrogel. Following the inoculation with human epidermal keratinocytes and consequent culture at the air-liquid interface, a multilayered epidermis is formed on top of the models. To study the wound healing process, we additionally developed an automated wounding device, which generates standardized wounds in a sterile atmosphere.

Introduction

皮肤是身体的最大器官。它创建的外部环境和内部器官之间的屏障。此外,在皮肤保护身体免受流体损失,环境影响,伤害和感染和有助于调节体温1。由于其暴露的位置,皮肤往往受机械,热或化学损伤。虽然皮肤通常能够自我修复,多个本地因素如感染,氧合,和静脉充分可导致受损的伤口愈合。伤口愈合也可以通过全身性因素,如肥胖,酒精中毒,吸烟,药物,营养和疾病,如糖 ​​尿病干扰。2

伤口愈合的过程中,可分为3个阶段:(i)该炎性阶段,(ii)所述增殖性和(ⅲ)重塑期。时伤害皮肤,复信号级联开始,从而导致伤口的闭合。3伤后,伤口出血并形成血块。成纤维细胞进入血液凝块并将其与随后被改造多年来新组织取代。

的生物学过程底层皮肤修复的当前理解是有限的。小动物及猪的模型已被用于研究伤口愈合。然而,这些结果不能被直接转移到由于物种特异性差异人类。除了 ​​这些体内模型 ,伤口愈合的某些方面可以通过经由在体外单层培养的基础上永生化细胞系或原代细胞刮擦模拟伤口的情况进行研究。4这些刮擦模型高度标准化,但不充分反映复合体内生理学5除了二维模型,三维人体皮肤等同物已经开发了用于皮肤病学研究。这些车型的真皮部分是GEnerated使用各种支架包括脱细胞真皮,6胶原水凝胶,7,8-糖胺9或合成材料10采用这些皮肤当量的上皮-间充质相互作用11的作用下,再上皮,成纤维细胞和角化细胞并且所述的蜂窝串扰的不同生长因子的影响进行研究。此外,这些模型是有用的,以获得有关如何成纤维细胞迁移到受伤区域,以及如何趋化因子影响的组织再生的新知识。12

不仅产生的伤口愈合模型本身的是具有挑战性的,而且还建立了高度标准化伤口模型中是有问题的。常见的技巧,营造出伤口划痕试验,13烫伤,14纸带耐磨,15热损伤,吸16水泡,17液氮,18激光器,19 </SUP>手术刀,18 meshers 6和活检拳。20这些方法大多有同样的缺陷。手动实施伤害是难以标准化和多次测试的重现。大小,形状和伤口的深入研究之间变化,从而削弱研究的数据的质量。利用激光对皮肤定义伤人可以比较容易地标准化,但导致一种情况模仿烧伤创面。由激光所施加的热可引起蛋白质变性,血小板聚集或血管收缩,这可导致坏死组织。

在另一种方法,我们开发了一个自动装置伤人(AWD),这使我们能够产生无菌条件下定义和精确的皮肤伤口。伤人的参数,如穿透深度和速度以及钻头的转速可以调节。在这项研究中,我们结合在内部开发的全层皮肤替代物的AWD(英尺SE),其是相当于由Gangatirkar 等人发表的协议。8皮肤等效的真皮层由人真皮成纤维细胞(HDF),它被嵌入在一个I型胶原凝胶。在真皮层,人表皮角化细胞(HEK)是种子。两周内,在空气-液体界面的HEK建立几个重要的细胞层和角质层组成的表皮。除了这种模式的产生,这项研究显示使用AWD的在富时创建定义和精确的伤口。

Protocol

注:该协议被设计为生产24全层皮肤等同物。人皮肤成纤维细胞和表皮角质形成细胞从皮肤活检根据此前公布的协议隔离。21,22知情同意书事先获得的研究是通过对人体的朱利叶斯-马克西米利-维尔茨堡大学的研究机构伦理委员会(投182 / 10)。 1.生产真皮组件的溶解的胶原蛋白与0.1%乙酸至6毫克/毫升的最终浓度。用于凝胶和溶液,混合232.5毫升的2×DMEM,7.5毫?…

Representative Results

分离的HDF和HEK无论在形态和在典型的标记物的表达不同。高密度板呈现典型的梭形形态,而HEK形态可以由鹅卵石形态加以说明。使用它们对富时之前的细胞进行表征通过免疫组织化学染色( 图1)。高密度板是积极的波形( 图1A),标记为成纤维细胞。初级HEK高度表达早期分化蛋白细胞角蛋白14( 图1B),但几乎没有迟到角质细胞分化蛋白细胞角蛋白10( <stron…

Discussion

体外细胞通常扩展在二维的细胞培养物,其中细胞粘附到塑料表面。然而,这些培养条件没有反映在其中细胞在体内生长的生理立体条件。根据三维的条件下,细胞可以形成天然的细胞 – 细胞和细胞 – 基质的附件和迁移在三维空间。特别是在皮肤伤口愈合的体内状况的相似性枢转以生成有意义数据,细 ​​胞迁移和基质产生的伤口愈合的关键要素。

为了…

Divulgations

The authors have nothing to disclose.

Acknowledgements

The authors thank the Fraunhofer ISC for the collaboration concerning the construction of the automated wounding device. The project was founded by Fraunhofer internal project “Märkte von Übermorgen” (SkinHeal).

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description
Trypsin EDTA (1:250) 0.5 % in DPBS  PAA L11-003 0.05%
Dulbecco’s Phosphate Buffered Saline Sigma D8537
Collagen (6 mg/ml in 0,1 % acetic acid) Produced in house
Fibronectin Human Protein, Plasma (50 µg/ml) Life Technologies 33016-015
Inserts Nunc 140627
6 well plate  Nunc 140685
24 well plate Nunc 142485
Microscope slides R. Langenbrinck 03-0070
Fibroblasts culturing (500 ml):
DMEM, high glucose Life Technologies 11965-092 89% (445 ml)
Fetal bovine serum Bio & Sell FCS.ADD.0500 10% (50 ml)
Penicillin-Streptomycin (10,000 U/mL) Life Technologies 15140-122 1% (5 ml)
Keratinozyten culture medium (500 ml): 
Keratinocyte Growth Medium 2 Promocell  C-20111 89% (445 ml)
Keratinocyte Growth Medium 2 SupplementPack Promocell  C-39011
Penicillin-Streptomycin (10,000 U/mL) Life Technologies 15140-122 1% (5 ml)
Gel neutralization solution (250 ml):
Dulbecco’s Modified Eagle Medium, high Glucose Powder with L-Glutamine PAA G0001,3010 93% (232,5 ml)
Chondroitin sulfate sodium salt from shark cartilage Sigma C4384-1g 1% (2,5 ml)
Fetal bovine serum Bio & Sell FCS.ADD.0500 3% (7,5 ml)
HEPES Sigma  H3375-1kg 3% (7,5 ml)
Skin model submers medium (500ml): 
Keratinocyte Growth Medium 2 Promocell  C-20111
Keratinocyte Growth Medium 2 SupplementPack Promocell  C-39011
Fetal calf serum Bio & Sell FCS.ADD.0500 5%-2% (25 ml-10 ml) 
Penicillin-Streptomycin (10,000 U/mL) Life Technologies 15140-122 1% (5 ml)
Skin model air-liquid interface medium (500 ml): 
Keratinocyte Growth Medium 2
Keratinocyte Growth Medium 2 Supplement Pack Promocell  C-39011 adding only supplements: Insulin, Hydrocortisone, Epinephrine, Transferrin, CaCl2
Penicillin-Streptomycin (10,000 U/mL) Life Technologies 15140-122 1% (5 ml)
CaCl2 (300 mM) Sigma  C7902-500g  0,62% (3,1 ml)
Histology:
IHC-Kit DCS SuperVision 2 HRP DCS PD000KIT
Vimentin antibody Abcam ab92547
CK14 antibody Sigma  HPA023040-100µl
CK10 antibody Dako M7002
Filaggrin antibody Abcam ab81468
H&E staining
Mayer´s Haemalaun AppliChem A0884,2500
Xylol Sigma Aldrich 296325-4X2L
Ethanol Sigma Aldrich 32205-4X2.5L
HCl Sigma Aldrich H1758-500ML
Eosin Sigma Aldrich E4009-5G
2-Propanolol Sigma Aldrich I9516-500ML
Mounting Medium Sigma Aldrich M1289-10ML

References

  1. Proksch, E., Brandner, J. M., Jensen, J. M. The skin: an indispensable barrier. Exp Dermatol. 17, 1063-1072 (2008).
  2. Guo, S., Dipietro, L. A. Factors affecting wound healing. J Dent Res. 89, 219-229 (2010).
  3. Kirsner, R. S., Eaglstein, W. H. The wound healing process. Dermatol Clin. 11, 629-640 (1993).
  4. Cory, G. Scratch-wound assay. Methods Mol Biol. 769, 25-30 (2011).
  5. Sun, T., Jackson, S., Haycock, J. W., MacNeil, S. Culture of skin cells in 3D rather than 2D improves their ability to survive exposure to cytotoxic agents. J Biotechnol. 122 (3), 372-381 (2006).
  6. Harrison, C. A., Heaton, M. J., Layton, C. M., Mac Neil, S. Use of an in vitro model of tissue-engineered human skin to study keratinocyte attachment and migration in the process of reepithelialization. Wound Repair Regen. 14 (2), 203-209 (2006).
  7. Wilkins, L. M., Watson, S. R., Prosky, S. J., Meunier, S. F., Parenteau, N. L. Development of a bilayered living skin construct for clinical applications. Biotechnol Bioeng. 43 (8), 747-756 (1994).
  8. Gangatirkar, P., Paquet-Fifield, S., Li, A., Rossi, R., Kaur, P. Establishment of 3D organotypic cultures using human neonatal epidermal cells. Nat Protoc. 2 (1), 178-186 (2007).
  9. Boyce, S. T. Skin substitutes from cultured cells and collagen-GAG polymers. Med Biol Eng Comput. 36 (6), 791-800 (1998).
  10. El-Ghalbzouri, A., Lamme, E. N., van Blitterswijk, C., Koopman, J., Ponec, M. The use of PEGT/PBT as a dermal scaffold for skin tissue engineering. Biomaterials. 25 (5), 2987-2996 (2004).
  11. Maas-Szabowski, N., Shimotoyodome, A., Fusenig, N. E. Keratinocyte growth regulation in fibroblast cocultures via a double paracrine mechanism. J Cell Sci. 112 (Pt 12), 1843-1853 (1999).
  12. Coolen, N. A., Vlig, M., vanden Bogaerdt, A. J., Middelkoop, E., Ulrich, M. M. Development of an in vitro burn wound model. Wound Repair Regen. 16 (4), 559-567 (2008).
  13. Oberringer, M., Meins, C., Bubel, M., Pohlemann, T. A new in vitro wound model based on the co-culture of human dermal microvascular endothelial cells and human dermal fibroblasts. Biol Cell. 99 (4), 197-207 (2007).
  14. Cribbs, R. K., Luquette, M. H., Besner, G. E. A standardized model of partial thickness scald burns in mice. J Surg Res. 80 (1), 69-74 (1998).
  15. Reed, J. T., Ghadially, R., Elias, P. M. Skin type, but neither race nor gender, influence epidermal permeability barrier function. Arch Dermatol. 131 (10), 1134-1138 (1995).
  16. Pilcher, B. K., et al. Keratinocyte collagenase-1 expression requires an epidermal growth factor receptor autocrine mechanism. J Biol Chem. 274 (15), 10372-10381 (1999).
  17. Blank, I. H., Miller, O. G. A method for the separation of the epidermis from the dermis. J Invest Dermatol. 15 (1), 9-10 (1950).
  18. El Ghalbzouri, A., et al. Fibroblasts facilitate re-epithelialization in wounded human skin equivalents. Lab Invest. 84 (1), 102-112 (2004).
  19. Vaughan, M. B., et al. A reproducible laser-wounded skin equivalent model to study the effects of aging in vitro. Rejuvenation Res. 7 (2), 99-110 (2004).
  20. Geer, D. J., Swartz, D. D., Andreadis, S. T. In vivo model of wound healing based on transplanted tissue-engineered skin. Tissue Eng. 10 (7-8), 1006-1017 (2004).
  21. Bell, E., et al. The reconstitution of living skin. J Invest Dermatol. 81 (1 Suppl), 2s-10s (1983).
  22. Asselineau, D., Prunieras, M. Reconstruction of ‘simplified’ skin: control of fabrication. Br J Dermatol. 111, 219-222 (1984).
  23. Pampaloni, F., Reynaud, E. G., Stelzer, E. H. K. The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol. 8 (10), 839-845 (2007).
check_url/fr/52576?article_type=t

Play Video

Citer Cet Article
Rossi, A., Appelt-Menzel, A., Kurdyn, S., Walles, H., Groeber, F. Generation of a Three-dimensional Full Thickness Skin Equivalent and Automated Wounding. J. Vis. Exp. (96), e52576, doi:10.3791/52576 (2015).

View Video