Summary

Долгосрочная прижизненные Многофотонная микроскопия изображений иммунных клеток в здоровых и больная печень Использование CXCR6.Gfp Reporter Мыши

Published: March 24, 2015
doi:

Summary

Stable intravital high-resolution imaging of immune cells in the liver is challenging. Here we provide a highly sensitive and reliable method to study migration and cell-cell-interactions of immune cells in mouse liver over long periods (about 6 hours) by intravital multiphoton laser scanning microscopy in combination with intensive care monitoring.

Abstract

Воспаления печени в ответ на повреждение является весьма динамический процесс с участием проникновение различных подтипов лейкоцитов, включая моноциты, нейтрофилы, Т-клеток подмножеств, В-клетки, природные клетки-киллеры (NK) и NKT-клеток. Прижизненные микроскопия печени для контроля миграции иммунных клеток является очень сложным из-за высоких требований в отношении подготовки образцов и фиксацию, оптическое разрешение и долгосрочное выживание животных. Тем не менее, динамика воспалительных процессов, а также исследований клеточных взаимодействий может обеспечить критическую информацию, чтобы лучше понять инициации, прогрессирования и регресс воспалительного заболевания печени. Таким образом, весьма чувствительны и надежный метод был создан для изучения миграции и клетка-клетка-взаимодействия различных иммунных клеток в печени мышей в течение длительных периодов времени (около 6 ч) по прижизненной двухфотонного лазерной сканирующей микроскопии (TPLSM) в сочетании с интенсивной терапии мониторинг.

ЛОР "> метод, предусмотренный включает в себя тщательная подготовка и стабильную фиксацию печени с минимальной возмущения органа; долгосрочный прижизненный визуализации с использованием многоцветной многофотонную микроскопии практически без фотовыцветания или фототоксических эффектов в течение периода времени до 6 часов, что позволяет отслеживать конкретных лейкоцитов подмножеств и стабильных условий формирования из-за обширных мониторинга мыши жизненно важных параметров и стабилизации кровообращения, температуры и газообмена.

Для исследования лимфоцитов миграцию от воспаления печени CXCR6.gfp нокаут у мышей подвергали прижизненной визуализации печени под исходных условий и после острого и хронического повреждения печени, вызванного внутрибрюшинной инъекции (ов) четыреххлористого углерода (CCl 4).

CXCR6 является рецептор хемокинов экспрессируется на лимфоцитах, в основном на природные клетки-киллеры T (НКТ) -, естественных киллеров (NK) – и подмножеств Т-лимфоцитов, таких как CD4 Т-клеток, но также слизистой оболочки associально инвариантным (MAIT) Т-клетки 1. После миграционную картину и позиционирование CXCR6.gfp + иммунных клеток позволила детально заглянуть в их измененном поведении после повреждения печени и, следовательно, их возможного участия в прогрессировании заболевания.

Introduction

Визуализация клеток и клеточных функций в целых органов или даже целых организмов был большой интерес для более чем 50 лет, в том числе практически во всех частях тела 2. Таким образом, некоторые ранние исследования уже используются прижизненной визуализации печени 3,4. Тем не менее, существуют некоторые ограничения в курсе относительно долгосрочного стабильного изображений с высоким разрешением ткани печени.

Из-за анатомическом положении печени в тесном контакте с мембраной и желудочно-кишечного тракта 5, наиболее распространенной проблемой для микроскопического прижизненной визуализации это движение за счет дыхания и, в меньшей степени, перистальтические из желудочно-кишечного тракта 6. По сравнению с другими твердыми органов, хирургия печени является чрезвычайно сложным. Из-за плотной структуры микрососудов, хирургических манипуляций может привести к массовым поражением геморрагических, нарушение микроциркуляции 7, а также активацию резидента яmmune клетки, такие как клетки Купфера 8. Таким образом, механическая фиксация ткани, опубликованы в другом месте 6,9, скорее всего, вмешиваться в прижизненной визуализации микроскопии.

В здоровой печени, 10-15% от общего объема крови находится в пределах сосудистой печени, и орган получает около 25% от общего сердечного выброса 10, что делает орган очень чувствительны к изменениям в обращении (например, колебания артериального давления ). Таким образом, сбои в печеночного кровотока, обусловленная, например, напряжение сдвига, смещения, травмы чрезмерной обработки тканей или централизованного обращения приведет к искусственным изменениям в лейкоцитарной миграционного поведения, нарушение оксигенации печени и поэтому дальнейшего повреждения печени, поражающими печень иммунный ответ, а также как сохранение органов и общего времени жизни животного.

Ранние микроскопические исследования были основаны на прижизненных эпифлуоресцентной мимикроскопия, но некоторые технические ограничения, такие как фото отбеливания и низкой глубины проникновения ограничить использование этого метода для долгосрочного изображений печени 4,11,12. С развитием МФ микроскопии в 1990-х годах, ограничения фото отбеливания или глубины проникновения в основном решена, так как это новый метод был технически способна выполнять исследования изображений практически во всех органах в реальных жизненных ситуациях 13-15. Тем не менее, основные нерешенные проблемы в отношении визуализации печени были: движения дыхания, автофлуоресценции ткани печени, обеспечения неизменном кровоток в печени синусоид и особенно стабильное изображение в течение длительного периода нескольких часов 16.

Хотя некоторые исследования имя функции и миграцию различных лейкоцитов в печени 17, например, NKT-клетки 18-20, Т-клетки 21,22, макрофаги печени 23,24 или нейтрофилы 25, долгосрочные многофотонное мicroscopy изображений еще не было успешно установлено, задача еще более сложная у животных с острой или хронической болезни печени в связи с существующей повреждения и поэтому более высокая чувствительность к дальнейшему повреждению 26. Однако мониторинг миграционное поведение и функцию клеток лейкоцитов в печени в режиме реального времени позволяет новый взгляд в их конкретной роли в гомеостазе заболевания печени и 27.

CXCR6 хемокинов рецептор экспрессируется на несколько подмножеств лимфоцитов, в том числе естественных киллеров (NK) клеток, НКТ-клеток и некоторых популяций Т-клеток 18,28. Предыдущие исследования на мышах показали, что CXCR6 и его родственный лиганд CXCL16 может управлять патрулирование НКТ-клеток на синусоиды печени во время гомеостаза. Следовательно, использование мышей CXCR6.gfp (несущий детонации-ин зеленого флуоресцентного белка [GFP] в локусе CXCR6) был описан исследовать миграцию лимфоцитов в различных органах, таких как мозг 29а также печень 18,20, показав увеличилось проникновение CXCR6.gfp клеток на воспаление.

С помощью способа, представленной в данном исследовании можно было выполнить следующие процессы в течение длительного периода времени при стабилизированных условиях. Прижизненный процедура, основанная многофотонное разрешается изображений, который был хорошо воспроизводимым с минимальным возмущением животного и органа; оптимизирована для долгосрочного выживания животного расширенного мониторинга с последующим тщательным контролем дыхания и кровообращения; и очень гибкий и легко принять и для других паренхиматозных органах, таких как почки или селезенки.

Protocol

ПРИМЕЧАНИЕ: эксперименты были проведены в соответствии с немецким законодательством, регулирующим исследования на животных Вслед за «Руководство по уходу и использованию лабораторных животных" (NIH публикации, 8-е издание, 2011) и Директива 2010/63 / ЕС по защите животных используется для ?…

Representative Results

Для проверки нашего прижизненный подход TPLSM, мы подвергли GFP / + мышей CXCR6 для прижизненной визуализации TPLSM. Мышей либо лечить качестве исходных управления или подвергают одной внутрибрюшинной инъекции четыреххлористого углерода (CCl 4), чтобы вызвать повреждение печени остры…

Discussion

Целью нашего исследования было разработать максимально стандартизированные, стабильные и воспроизводимые метод прижизненной TPLSM визуализации печени. Прижизненные изображения в целом дал ценные сведения сотовой поведения в реальных условиях жизни после наведения и взаимодействия р…

Divulgations

The authors have nothing to disclose.

Acknowledgements

The authors thank the Central Animal facility of the University Hospital Aachen for technical support. This work was supported by the German Research Foundation (DFG Ta434/2-1, DFG SFB/TRR 57) and by the Interdisciplinary Center for Clinical Research (IZKF) Aachen. This work was further supported by the Core Facility ”Two-Photon Imaging”, a Core Facility of the Interdisciplinary Center for Clinical Research (IZKF) Aachen within the Faculty of Medicine at RWTH Aachen University.

Materials

Anesthetics
Buprenorphine Essex Pharma 997.00.00 Analgeticum, 0.1 mg/kg
Fentanyl Rotex Medica charge: 30819
Fluovac anesthesia system Harvard Apparatus 34-1030
Glucose 5% Braun
ISOFLO (Isoflurane Vapor) vaporiser Eickemeyer 4802885
Isoflurane Forene Abbott B 506
Isotonic (0.9%) NaCl solution DeltaSelect GmbH PZN 00765145
Ketamin 10% ceva Charge: 36217/09
Xylazin 2% medistar Charge: 04-03-9338/23
Consumable supplies
20ml Syringe BD Plastipak
250ml Erlenmeyer flask Schott Duran 21 226 36
25mL Beaker 2x Schott Duran 50-1150
2ml syringe BD Plastipak
4-0 Vicryl suture Ethicon V7980
Agarose commercially available
Bepanthen Eye and Nose ointment Bayer Vital GmbH 6029009.00.00
Change-A-Tip Deluxe High-Temp Cautery Kit Fine Science Tools Inc. 18010-00
Cotton Gauze swabs Fuhrmann GmbH 32014
Cover Slip 24x50mm ROTH 1871
Durapore silk tape 3M 1538-1
Feather disposable scalpel Feather 02.001.30.011
Fine Bore Polythene Tubing 0,58mm ID Smiths medical 800/100/200
Histoacryl Braun 1050052 5x 0,5ml
Leukoplast BSN Medical Inc.
Microscope Slides ROTH 1879
Poly-Alcohol Haut…farblos Antisepticum Antiseptica GmbH 72PAH200
Sterican needle 18 G x 1 B. Braun 304622
Sterican needle 27 3/4 G x 1 B. Braun 4657705
Tissue paper commercially available
Surgical Instruments
Amalgam burnisher 3PL Gatz 0110?
Blair retractors (4 pronged (blunt)) x2 Storz&Klein S-01134
Dumont No.7 forceps Fine Science Tools Inc. 91197-00
Graefe forceps curved x1 Fine Science Tools Inc. 11151-10
Graefe forceps straight x2 Fine Science Tools Inc. 11050-10
Heidemann spatula HD2 Stoma 2030.00
Needle holder Mathieu Fine Science Tools Inc. 12010-14
Scissor Fine Science Tools Inc. 14074-11
Semken forceps Fine Science Tools Inc. 11008-13
Small surgical scissors curved Fine Science Tools Inc. 14029-10
Small surgical scissors straight Fine Science Tools Inc. 14028-10
Standard pattern forceps Fine Science Tools Inc. 11000-12
Vannas spring scissors Fine Science Tools Inc. 15000-08
Equipment
ECG Trigger Unit Rapid Biomedical 3000003686
MICROCAPSTAR End-Tidal Carbon Dioxide Analyzer AD Instruments
Minivent Typ 845 Harvard Apparatus 73-0043
Multiphoton microscope Trimscope I LaVision
Perfusor Compact B. Braun
PowerLab 8/30 8 channel recorder AD Instruments PL3508
Temperature controlled heating pad Sygonix 26857617
Temperature sensor comercially available
Temperature controlled System for Microscopes -Cube&Box Life Imaging Services

References

  1. Dusseaux, M., et al. Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells. Blood. 117 (4), 1250-1259 (2011).
  2. Reese, A. J. The effect of hypoxia on liver secretion studied by intravital fluorescence microscopy. Br J Exp Pathol. 41, 527-535 (1960).
  3. Bhathal, P. S., Christie, G. S. Intravital fluorescence microscopy study of bile ductule proliferation in guinea pigs. Gut. 10 (11), 955 (1969).
  4. Stefenelli, N. Terminal vascular system and microcirculation of the rat liver in intravital microscopy. Wien Klin Wochenschr. 82 (33), 575-578 (1970).
  5. Hori, T., et al. Simple and sure methodology for massive hepatectomy in the mouse. Ann Gastroenterol. 24 (4), 307-318 (2011).
  6. Tanaka, K., et al. Intravital dual-colored visualization of colorectal liver metastasis in living mice using two photon laser scanning microscopy. Microsc Res Tech. 75 (3), 307-315 (2011).
  7. Schemmer, P., Bunzendahl, H., Klar, E., Thurman, R. G. Reperfusion injury is dramatically increased by gentle liver manipulation during harvest. Transpl Int. 13, S525-S527 (2000).
  8. Schemmer, P., et al. Activated Kupffer cells cause a hypermetabolic state after gentle in situ manipulation of liver in rats. Am J Physiol Gastrointest Liver Physiol. 280 (6), G1076-G1082 (2001).
  9. Toiyama, Y., et al. Intravital imaging of DSS-induced cecal mucosal damage in GFP-transgenic mice using two-photon microscopy. J Gastroenterol. 45 (5), 544-553 (2010).
  10. Zimmon, D. S. The hepatic vasculature and its response to hepatic injury: a working hypothesis. Yale J Biol Med. 50 (5), 497-506 (1977).
  11. Wong, J., et al. A minimal role for selectins in the recruitment of leukocytes into the inflamed liver microvasculature. J Clin Invest. 99 (11), 2782-2790 (1997).
  12. Bonder, C. S., et al. Essential role for neutrophil recruitment to the liver in concanavalin A-induced hepatitis. J Immunol. 172 (1), 45-53 (2004).
  13. Xu, C., Zipfel, W., Shear, J. B., Williams, R. M., Webb, W. W. Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy. Proc Natl Acad Sci U S A. 93 (20), 10763-10768 (1996).
  14. Centonze, V. E., White, J. G. Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging. Biophys J. 75 (4), 2015-2024 (1998).
  15. Amore, J. D., et al. In vivo multiphoton imaging of a transgenic mouse model of Alzheimer disease reveals marked thioflavine-S-associated alterations in neurite trajectories. J Neuropathol Exp Neurol. 62 (2), 137-145 (2003).
  16. Hickey, M. J., Westhorpe, C. L. V. Imaging inflammatory leukocyte recruitment in kidney, lung and liver–challenges to the multi-step paradigm. Immunol Cell Biol. 91 (4), 281-289 (2013).
  17. McLellan, M. E., Kajdasz, S. T., Hyman, B. T., Bacskai, B. J. In vivo imaging of reactive oxygen species specifically associated with thioflavine S-positive amyloid plaques by multiphoton microscopy. J Neurosci. 23 (6), 2212-2217 (2003).
  18. Geissmann, F., et al. Intravascular Immune Surveillance by CXCR6+ NKT Cells Patrolling Liver Sinusoids. PLoS Biology. 3 (4), (2005).
  19. Velázquez, P., et al. Cutting edge: activation by innate cytokines or microbial antigens can cause arrest of natural killer T cell patrolling of liver sinusoids. J Immunol. 180 (4), 2024-2028 (2008).
  20. Wehr, A., et al. Chemokine receptor CXCR6-dependent hepatic NK T Cell accumulation promotes inflammation and liver fibrosis. J Immunol. 190 (10), 5226-5236 (2013).
  21. Khandoga, A., Hanschen, M., Kessler, J. S., Krombach, F. CD4+ T cells contribute to postischemic liver injury in mice by interacting with sinusoidal endothelium and platelets. Hepatology. 43 (2), 306-315 (2006).
  22. Egen, J. G., et al. Macrophage and T cell dynamics during the development and disintegration of mycobacterial granulomas. Immunity. 28 (2), 271-284 (2008).
  23. Beattie, L., et al. Leishmania donovani-induced expression of signal regulatory protein alpha on Kupffer cells enhances hepatic invariant NKT-cell activation. Eur J Immunol. 40 (1), 117-123 (2010).
  24. Beattie, L., et al. Dynamic imaging of experimental Leishmania donovani-induced hepatic granulomas detects Kupffer cell-restricted antigen presentation to antigen-specific CD8 T cells. PLoS Pathog. 6 (3), e1000805 (2010).
  25. McDonald, B., et al. Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science. 330 (6002), 362-366 (2010).
  26. Vanheule, E., et al. An intravital microscopic study of the hepatic microcirculation in cirrhotic mice models: relationship between fibrosis and angiogenesis. Int J Exp Pathol. 89 (6), 419-432 (2008).
  27. Jenne, C. N., Kubes, P. Immune surveillance by the liver. Nat Immunol. 14 (10), 996-1006 (2013).
  28. Zimmermann, H. W., Tacke, F. Modification of chemokine pathways and immune cell infiltration as a novel therapeutic approach in liver inflammation and fibrosis. Inflamm Allergy Drug Targets. 10 (6), 509-536 (2011).
  29. Kim, J. V., et al. Two-photon laser scanning microscopy imaging of intact spinal cord and cerebral cortex reveals requirement for CXCR6 and neuroinflammation in immune cell infiltration of cortical injury sites. J Immunol Methods. 352 (1-2), 89-100 (2010).
  30. Karlmark, K. R., et al. Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology. 50 (1), 261-274 (2009).
  31. Heymann, F., et al. Hepatic macrophage migration and differentiation critical for liver fibrosis is mediated by the chemokine receptor C-C motif chemokine receptor 8 in mice. Hepatology. 55 (3), 898-909 (2012).
  32. Ramachandran, P., et al. Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc Natl Acad Sci U S A. 109 (46), E3186-E3195 (2012).
  33. Moles, A., et al. A TLR2/S100A9/CXCL-2 signaling network is necessary for neutrophil recruitment in acute and chronic liver injury in the mouse. J Hepatol. 60 (4), 782-791 (2014).
  34. Hammerich, L., et al. Chemokine receptor CCR6-dependent accumulation of γδ T cells in injured liver restricts hepatic inflammation and fibrosis. Hepatology. 59 (2), 630-642 (2014).
  35. Syn, W. -. K., et al. NKT-associated hedgehog and osteopontin drive fibrogenesis in non-alcoholic fatty liver disease. Gut. 61 (9), 1323-1329 (2012).
  36. McDonald, B., et al. Interaction of CD44 and hyaluronan is the dominant mechanism for neutrophil sequestration in inflamed liver sinusoids. J Exp Med. 205 (4), 915-927 (2008).
  37. Egen, J. G., et al. Intravital imaging reveals limited antigen presentation and T cell effector function in mycobacterial granulomas. Immunity. 34 (5), 807-819 (2011).
  38. Singer, G., Stokes, K. Y., Granger, D. N. Hepatic microcirculation in murine sepsis: role of lymphocytes. Pediatr Surg Int. 24 (1), 13-20 (2008).
  39. Phillipson, M., Kubes, P. The neutrophil in vascular inflammation. Nat Med. 17 (11), 1381-1390 (2011).
  40. Khandoga, A. G., et al. In vivo imaging and quantitative analysis of leukocyte directional migration and polarization in inflamed tissue. PLoS One. 4 (3), e4693 (2009).
check_url/fr/52607?article_type=t

Play Video

Citer Cet Article
Heymann, F., Niemietz, P. M., Peusquens, J., Ergen, C., Kohlhepp, M., Mossanen, J. C., Schneider, C., Vogt, M., Tolba, R. H., Trautwein, C., Martin, C., Tacke, F. Long Term Intravital Multiphoton Microscopy Imaging of Immune Cells in Healthy and Diseased Liver Using CXCR6.Gfp Reporter Mice. J. Vis. Exp. (97), e52607, doi:10.3791/52607 (2015).

View Video