Summary

同步<em>新月柄杆菌</em>对细菌细胞周期的研究

Published: April 08, 2015
doi:

Summary

Synchronization of bacterial cells is essential for studies of the bacterial cell cycle and development. Caulobacter crescentus is synchronizable through density centrifugation allowing a rapid and powerful tool for studies of the bacterial cell cycle. Here we provide a detailed protocol for the synchronization of Caulobacter cells.

Abstract

The cell cycle is important for growth, genome replication, and development in all cells. In bacteria, studies of the cell cycle have focused largely on unsynchronized cells making it difficult to order the temporal events required for cell cycle progression, genome replication, and division. Caulobacter crescentus provides an excellent model system for the bacterial cell cycle whereby cells can be rapidly synchronized in a G0 state by density centrifugation. Cell cycle synchronization experiments have been used to establish the molecular events governing chromosome replication and segregation, to map a genetic regulatory network controlling cell cycle progression, and to identify the establishment of polar signaling complexes required for asymmetric cell division. Here we provide a detailed protocol for the rapid synchronization of Caulobacter NA1000 cells. Synchronization can be performed in a large-scale format for gene expression profiling and western blot assays, as well as a small-scale format for microscopy or FACS assays. The rapid synchronizability and high cell yields of Caulobacter make this organism a powerful model system for studies of the bacterial cell cycle.

Introduction

细菌细胞周期控制的基因组中的两个复制和子细胞的分裂。重要的是,抗生素耐药性是一个日益严重的威胁到公众健康,细菌细胞周期呈现抗生素发展的尚未开发的目标。

在细菌柄杆菌新月 ,每个细胞周期导致一个不对称分裂,产生不同的命运( 1A)1,2的两个子细胞。一个子细胞继承了鞭毛是能动的,而另一个女儿继承柄和无柄是。一个集成的基因电路控制细胞周期进程和细胞命运的转录调控,磷酸化信号,和监管蛋白水解3。此外,染色体复制和并发分流率的子细胞包含4号染色体只有一个拷贝。重要的是,这两种类型的细胞可迅速地通过胶体分离在可同步NA1000菌株5-7允许swarmer细胞从具有高产率( 图1B)的人口的其余部分隔离IDAL二氧化硅粒子密度离心。隔离swarmer细胞,然后通过不对称细胞分裂进行同步。在这里,我们详细介绍了协议用 ​​于同步柄杆菌菌株NA1000。我们提供的协议,并为大规模和小规模的同步常见故障排除技巧。这个实验的过程提供了一个功能强大的工具来询问柄杆菌细胞周期和细胞命运的时空控制。

Protocol

1.大型同步性 – 最佳西方印迹,芯片/ RNA测序,和其他物资集约化化验从冰柜股票或板块,通过在28°C在PYE中颤抖成长应变NA1000的5毫升O / N培养。 接种0.5ml所细胞从步骤1在25毫升M2G的(表1-2)和摇动在28℃,直到培养物达到0.5和0.6之间的OD 600。 接种细胞到1升M2G和动摇,在28°C。 一旦OD 600达到0.5至0.6,确认swarmer使用液相安装相位显微镜细胞的存在。点1微?…

Representative Results

同步通常产生细胞的两条带( 图1B):对swarmer带,它具有较高的密度和较低的密度的一个柄/ predivisional细胞带。为了确保高效的同步常见的控制包括监测OD 600和测量CTRA蛋白水平通过免疫印迹在不同的细胞周期的时间点。的OD 600应在细胞周期的过程中( 图2)中约2倍的增加。在免疫印迹的细胞周期主控调节CTRA是一个有用的控制,以验证一个好的同步( <str…

Discussion

The bacterial cell cycle is a fundamental process in life and is important for the study of growth and as a target for next generation antibiotics. Here, we detailed the rapid synchronization procedures for C. crescentus NA1000, a model organism for the study of the bacterial cell cycle and asymmetric cell division. This method is amendable to western blot, gene expression profiling, and fluorescence microscopy assays to investigate the spatiotemporal regulation of the bacterial cell cycle.

<p class='jove_…

Divulgations

The authors have nothing to disclose.

Acknowledgements

The authors thank members of the Shapiro lab and Erin Schrader for comments on the manuscript. The authors acknowledge financial support from: NIH postdoctoral fellowship F32 GM100732 to JMS and NIH grants R01 GM51426 and R01 GM32506 to LS.

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description
PVP Coated Colloidal Silica (Percoll) Sigma-Aldrich P4937
Colloidal Silica (Ludox AS-40) Sigma-Aldrich 420840
JA10 Rotor Beckman-Coulter 369687
JA20 Rotor Beckman-Coulter 334831
Ferrous Sulfate Chelate Solution Sigma-Aldrich F0518
30 mL Centrifuge Tubes Corning 8445
Na2HPO4 EMD SX0720-1
KH2PO4 VWR BDH9268-500G
NH4Cl Amresco 0621-500g

References

  1. McAdams, H. H., Shapiro, L. System-level design of bacterial cell cycle control. FEBS Lett. 583, 3984-3991 (2009).
  2. McAdams, H. H., Shapiro, L. The architecture and conservation pattern of whole-cell control circuitry. J. Mol. Biol. 409, 28-35 (2011).
  3. McAdams, H. H., Shapiro, L. A bacterial cell-cycle regulatory network operating in time and space. Science. 301, 1874-1877 (2003).
  4. Ptacin, J. L., Shapiro, L. Initiating bacterial mitosis: understanding the mechanism of ParA-mediated chromosome segregation. Cell Cycle. 9, 4033-4034 (2010).
  5. Evinger, M., Agabian, N. Envelope-associated nucleoid from Caulobacter crescentus stalked and swarmer cells. J. Bacteriol. 132, 294-301 (1977).
  6. Tsai, J. W., Alley, M. R. Proteolysis of the Caulobacter McpA chemoreceptor is cell cycle regulated by a ClpX-dependent pathway. J. Bacteriol. 183, 5001-5007 (2001).
  7. Marks, M. E., et al. The genetic basis of laboratory adaptation in Caulobacter crescentus. J. Bacteriol. 192, 3678-3688 (2010).
  8. Ely, B. Genetics of Caulobacter crescentus. Methods Enzymol. 204, 372-384 (1991).
  9. Williams, B., Bhat, N., Chien, P., Shapiro, L. ClpXP and ClpAP proteolytic activity on divisome substrates is differentially regulated following the Caulobacter asymmetric cell division. Mol. Microbiol. 93, 853-866 (2014).
  10. Quon, K. C., Yang, B., Domian, I. J., Shapiro, L., Marczynski, G. T. Negative control of bacterial DNA replication by a cell cycle regulatory protein that binds at the chromosome origin. Proc. Natl. Acad. Sci. U. S. A. 95, 120-125 (1998).
  11. Laub, M. T., Chen, S. L., Shapiro, L., McAdams, H. H. Genes directly controlled by CtrA, a master regulator of the Caulobacter cell cycle. Proc. Natl. Acad. Sci. U. S. A. 99, 4632-4637 (2002).
  12. Quon, K. C., Marczynski, G. T., Shapiro, L. Cell cycle control by an essential bacterial two-component signal transduction protein. Cell. 84, 83-93 (1996).
  13. Ferullo, D. J., Cooper, D. L., Moore, H. R., Lovett, S. T. Cell cycle synchronization of Escherichia coli using the stringent response, with fluorescence labeling assays for DNA content and replication. Methods. 48, 8-13 (2009).
  14. Degnen, S. T., Newton, A. Chromosome replication during development in Caulobacter crescentus. J. Mol. Biol. 64, 671-680 (1972).
  15. Bates, D., et al. The Escherichia coli baby cell column: a novel cell synchronization method provides new insight into the bacterial cell cycle. Mol. Microbiol. 57, 380-391 (2005).
  16. Abel, S., et al. Bi-modal distribution of the second messenger c-di-GMP controls cell fate and asymmetry during the caulobacter cell cycle. PLoS Genet. 9, e1003744 (2013).
  17. Johnson, R. C., Ely, B. Isolation of spontaneously derived mutants of Caulobacter crescentus. Génétique. 86, 25-32 (1977).
  18. Britos, L., et al. Regulatory response to carbon starvation in Caulobacter crescentus. PLoS One. 6, e18179 (2011).
  19. Boutte, C. C., Crosson, S. The complex logic of stringent response regulation in Caulobacter crescentus: starvation signalling in an oligotrophic environment. Mol. Microbiol. 80, 695-714 (2011).

Play Video

Citer Cet Article
Schrader, J. M., Shapiro, L. Synchronization of Caulobacter Crescentus for Investigation of the Bacterial Cell Cycle. J. Vis. Exp. (98), e52633, doi:10.3791/52633 (2015).

View Video