Summary

Sincronizzazione di<em> Caulobacter crescentus</em> Per Indagine del ciclo cellulare batterica

Published: April 08, 2015
doi:

Summary

Synchronization of bacterial cells is essential for studies of the bacterial cell cycle and development. Caulobacter crescentus is synchronizable through density centrifugation allowing a rapid and powerful tool for studies of the bacterial cell cycle. Here we provide a detailed protocol for the synchronization of Caulobacter cells.

Abstract

The cell cycle is important for growth, genome replication, and development in all cells. In bacteria, studies of the cell cycle have focused largely on unsynchronized cells making it difficult to order the temporal events required for cell cycle progression, genome replication, and division. Caulobacter crescentus provides an excellent model system for the bacterial cell cycle whereby cells can be rapidly synchronized in a G0 state by density centrifugation. Cell cycle synchronization experiments have been used to establish the molecular events governing chromosome replication and segregation, to map a genetic regulatory network controlling cell cycle progression, and to identify the establishment of polar signaling complexes required for asymmetric cell division. Here we provide a detailed protocol for the rapid synchronization of Caulobacter NA1000 cells. Synchronization can be performed in a large-scale format for gene expression profiling and western blot assays, as well as a small-scale format for microscopy or FACS assays. The rapid synchronizability and high cell yields of Caulobacter make this organism a powerful model system for studies of the bacterial cell cycle.

Introduction

Il ciclo cellulare batterica controlla sia la replicazione del genoma e la divisione di cellule figlie. È importante sottolineare che, come la resistenza agli antibiotici è una crescente minaccia per la salute pubblica, il ciclo cellulare batterica presenta un obiettivo non sfruttata per lo sviluppo di antibiotici.

In batterio Caulobacter crescentus, ogni ciclo cellulare porta ad una divisione asimmetrica, ottenendo due cellule figlie di sorti diverse (Figura 1A) 1,2. Una cellula figlia eredita un flagello ed è mobile, mentre l'altra figlia eredita un gambo ed è sessile. Un circuito genetico integrato controlla la progressione del ciclo cellulare e destino cellulare da regolazione trascrizionale, fosfo-segnalazione, e proteolisi regolata 3. Inoltre, la replicazione dei cromosomi e cellule figlie rendimento segregazione simultanee che contengono esattamente una copia del cromosoma 4. È importante sottolineare che questi due tipi di cellule possono essere rapidamente separati da colloIdal particella di silice centrifugazione densità nel ceppo sincronizzabile NA1000 5-7 consente l'isolamento delle cellule swarmer dal resto della popolazione con rese elevate (Figura 1B). Isolato swarmer cellule quindi procedere in modo sincrono attraverso la divisione cellulare asimmetrica. Qui, abbiamo dettaglio il protocollo usato per la sincronizzazione Caulobacter ceppo NA1000. Forniamo protocolli e risoluzione dei problemi comuni sia larga e piccola scala sincronizzazioni. Questa procedura sperimentale fornisce un potente strumento per interrogare il controllo spazio-temporale del ciclo cellulare Caulobacter e il destino delle cellule.

Protocol

1. larga scala Synchrony – ottimale per Western Blot, Microarray / RNA-Seq, e altro materiale saggi Intensive Da uno stock congelatore o un piatto, crescere a 5 ml O / N cultura del ceppo NA1000 agitando a 28 ° C in PYE medio. Inoculare 0,5 ml delle cellule dal punto 1 in 25 ml di M2G (Tabelle 1-2) e agitare a 28 ° C fino alla cultura raggiunge un OD 600 tra 0,5 e 0,6. Inoculare le cellule in 1 L di M2G e agitare a 28 ° C. Una volta OD 600 raggiunge 0.5 a…

Representative Results

Sincronizzazione tipicamente produce due bande di cellule (Figura 1B): la banda swarmer, che ha una densità più elevata, e una banda cellulare pedinato / predivisional di densità inferiore. Per garantire la sincronizzazione efficiente controlli comuni comprendono il monitoraggio della OD 600 e misurando i livelli di proteina Ctra da Western Blot in distinte del ciclo cellulare punti di tempo. La OD 600 dovrebbe aumentare di circa 2 volte nel corso del ciclo cellulare (Fi…

Discussion

The bacterial cell cycle is a fundamental process in life and is important for the study of growth and as a target for next generation antibiotics. Here, we detailed the rapid synchronization procedures for C. crescentus NA1000, a model organism for the study of the bacterial cell cycle and asymmetric cell division. This method is amendable to western blot, gene expression profiling, and fluorescence microscopy assays to investigate the spatiotemporal regulation of the bacterial cell cycle.

<p class='jove_…

Divulgations

The authors have nothing to disclose.

Acknowledgements

The authors thank members of the Shapiro lab and Erin Schrader for comments on the manuscript. The authors acknowledge financial support from: NIH postdoctoral fellowship F32 GM100732 to JMS and NIH grants R01 GM51426 and R01 GM32506 to LS.

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description
PVP Coated Colloidal Silica (Percoll) Sigma-Aldrich P4937
Colloidal Silica (Ludox AS-40) Sigma-Aldrich 420840
JA10 Rotor Beckman-Coulter 369687
JA20 Rotor Beckman-Coulter 334831
Ferrous Sulfate Chelate Solution Sigma-Aldrich F0518
30 mL Centrifuge Tubes Corning 8445
Na2HPO4 EMD SX0720-1
KH2PO4 VWR BDH9268-500G
NH4Cl Amresco 0621-500g

References

  1. McAdams, H. H., Shapiro, L. System-level design of bacterial cell cycle control. FEBS Lett. 583, 3984-3991 (2009).
  2. McAdams, H. H., Shapiro, L. The architecture and conservation pattern of whole-cell control circuitry. J. Mol. Biol. 409, 28-35 (2011).
  3. McAdams, H. H., Shapiro, L. A bacterial cell-cycle regulatory network operating in time and space. Science. 301, 1874-1877 (2003).
  4. Ptacin, J. L., Shapiro, L. Initiating bacterial mitosis: understanding the mechanism of ParA-mediated chromosome segregation. Cell Cycle. 9, 4033-4034 (2010).
  5. Evinger, M., Agabian, N. Envelope-associated nucleoid from Caulobacter crescentus stalked and swarmer cells. J. Bacteriol. 132, 294-301 (1977).
  6. Tsai, J. W., Alley, M. R. Proteolysis of the Caulobacter McpA chemoreceptor is cell cycle regulated by a ClpX-dependent pathway. J. Bacteriol. 183, 5001-5007 (2001).
  7. Marks, M. E., et al. The genetic basis of laboratory adaptation in Caulobacter crescentus. J. Bacteriol. 192, 3678-3688 (2010).
  8. Ely, B. Genetics of Caulobacter crescentus. Methods Enzymol. 204, 372-384 (1991).
  9. Williams, B., Bhat, N., Chien, P., Shapiro, L. ClpXP and ClpAP proteolytic activity on divisome substrates is differentially regulated following the Caulobacter asymmetric cell division. Mol. Microbiol. 93, 853-866 (2014).
  10. Quon, K. C., Yang, B., Domian, I. J., Shapiro, L., Marczynski, G. T. Negative control of bacterial DNA replication by a cell cycle regulatory protein that binds at the chromosome origin. Proc. Natl. Acad. Sci. U. S. A. 95, 120-125 (1998).
  11. Laub, M. T., Chen, S. L., Shapiro, L., McAdams, H. H. Genes directly controlled by CtrA, a master regulator of the Caulobacter cell cycle. Proc. Natl. Acad. Sci. U. S. A. 99, 4632-4637 (2002).
  12. Quon, K. C., Marczynski, G. T., Shapiro, L. Cell cycle control by an essential bacterial two-component signal transduction protein. Cell. 84, 83-93 (1996).
  13. Ferullo, D. J., Cooper, D. L., Moore, H. R., Lovett, S. T. Cell cycle synchronization of Escherichia coli using the stringent response, with fluorescence labeling assays for DNA content and replication. Methods. 48, 8-13 (2009).
  14. Degnen, S. T., Newton, A. Chromosome replication during development in Caulobacter crescentus. J. Mol. Biol. 64, 671-680 (1972).
  15. Bates, D., et al. The Escherichia coli baby cell column: a novel cell synchronization method provides new insight into the bacterial cell cycle. Mol. Microbiol. 57, 380-391 (2005).
  16. Abel, S., et al. Bi-modal distribution of the second messenger c-di-GMP controls cell fate and asymmetry during the caulobacter cell cycle. PLoS Genet. 9, e1003744 (2013).
  17. Johnson, R. C., Ely, B. Isolation of spontaneously derived mutants of Caulobacter crescentus. Génétique. 86, 25-32 (1977).
  18. Britos, L., et al. Regulatory response to carbon starvation in Caulobacter crescentus. PLoS One. 6, e18179 (2011).
  19. Boutte, C. C., Crosson, S. The complex logic of stringent response regulation in Caulobacter crescentus: starvation signalling in an oligotrophic environment. Mol. Microbiol. 80, 695-714 (2011).
check_url/fr/52633?article_type=t

Play Video

Citer Cet Article
Schrader, J. M., Shapiro, L. Synchronization of Caulobacter Crescentus for Investigation of the Bacterial Cell Cycle. J. Vis. Exp. (98), e52633, doi:10.3791/52633 (2015).

View Video