Summary

淋巴细胞微粒和检测其促凋亡作用的气道上皮细胞产生

Published: February 20, 2015
doi:

Summary

细胞膜棚微粒(MPS)是活性生物囊泡可以分离和它们的病理生理作用研究了各种模型。在这里,我们描述了从生成T淋巴细胞(的LMP)得出国会议员和展示他们对气道上皮细胞凋亡作用的方法。

Abstract

在细胞 – 细胞通讯细胞膜衍生囊泡的生物角色的兴趣,近年来已增加。微粒(MPS)是一种这样的类型的小泡,直径范围为0.1微米至1微米,并且通常从真核细胞进行活化或凋亡的质膜棚。在这里,我们描述了从凋亡的CEM T细胞与放线菌素D的LMP是通过一个多步差速离心处理分离和表征使用流式细胞术刺激的T淋巴细胞衍生的微粒(的LMP)的生成。该协议也为展示的LMP对小鼠原发性呼吸支气管组织植源性支气管上皮细胞凋亡的作用原位细胞死亡检测方法。本文描述的方法在体外分离量的LMP丰富的淋巴细胞凋亡提供了可重复的过程。 LMP的派生以这种方式可以用来评价各种疾病模型的特征,并为药理学和毒理学试验。鉴于气道上皮提供外部环境和下面的组织之间的保护物理和功能障碍,使用支气管组织的外植体,而不是永生化上皮细胞系提供了有效的模型用于要求气道组织的调查。

Introduction

Microparticles (MPs) are biologically active submicron membrane vesicles released following cell activation or apoptosis. MPs are derived from both healthy and damaged cells and are implicated in many physiological and pathological processes.1 MPs have been detected not only in human plasma, but also in inflammatory and apoptotic tissue. The biological utility of cell membrane–derived MPs has been demonstrated in various settings, including cell signalling models and as pharmacological tools.2,3 We previously demonstrated that LMPs derived from T lymphocytes following actinomycin D stimulation (to induce apoptosis) suppress angiogenesis and inhibit endothelial cell survival and proliferation.4,5 The antiangiogenic effects of LMPs may vary significantly depending on the stimuli used to activate T lymphocytes in vitro.6

The airway epithelium functions as a protective physical and functional barrier. Increased numbers of T lymphocytes in the airway can contribute to cell damage and airway inflammation.7 We have shown that LMPs induce apoptosis of human bronchial epithelial cells,8 which indicated LMPs may change barrier function of bronchial epithelium in vivo. Apoptotic cells can be identified using the TUNEL method, which detects in situ DNA fragmentation.

The overall goal of this protocol is to illustrate the in vitro production of LMPs from a T lymphocyte cell line, and to demonstrate their proapoptotic effect on airway epithelial cells. In situ cell death detection demonstrated that LMPs strongly induce airway bronchial epithelial cell death, suggesting that LMPs-mediated injury to the airway epithelium may impact barrier function of the damaged epithelium.

Protocol

注:雄性C57BL / 6小鼠(5-7周龄)从查尔斯河实验室国际公司(ST-恒,魁北克,加拿大),并根据批准的朱圣 – 海宁动物护理委员会的协议操作。小鼠支气管组织的外植体用于研究的LMP的上皮细胞上的促凋亡效应提供初级支气管上皮细胞的良好来源。这个协议描述了在体外产生的LMP的,以及用于检测对LMP的治疗支气管组织的外植体凋亡的上皮细胞的方法。该协议包括3个部分。 <p class="jove_t…

Representative Results

通过荧光激活细胞分选(FACS)分析,并使用1微米的小珠,其中国会议员(≤1微米)的97%的人膜联蛋白-V-Cy5的阳性门控的LMP进行表征与膜联蛋白V染色10( 图1A和1B)。通常情况下,的LMP为约2.5毫克,得到下列该协议。从C57BL支气管组织的外植体/ 6小鼠进行车辆和的LMP治疗。支气管切片的组织病理学分析揭示的LMP对支气管上皮细胞的结构完整性的影响。在对照外植体,细支气管…

Discussion

国会议员是细胞间串扰活性介质和他们的研究是有希望在科学的许多领域。11本研究中提出的体外大规模发电的LMP从凋亡T细胞系衍生的详细协议。这些国会议员表达细胞分子的大型剧目,并且生物牵连的细胞和组织稳态的调节。然而,LMP的源于不同来源可能是生物学上不同。4,9,12,13

的LMP显示根据用于生成它们在体外刺激和从它们所衍生自的细胞?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

视力保健研究网络 – 这项工作是由卫生研究所(178918),全宗德RECHERCHE连接桑特魁北克的加拿大学院资助。

Materials

LMPs production and characterization
CEM T cells  ATCC  CCL-119
X-VIVO 15 medium  Cambrex, Walkersville 04-744Q
Flask T75 Sarstedt 83.1813.502
Flask T175 Sarstedt 83.1812.502
Actinomycin D  Sigma Chemical Co. A9415-2mg
PBS Lifetechnologies 14190-144
0.22µm filter Sarstedt 83.1826.001
Annexin-VCy5 BD Pharmagen  559933
FACS flow solution BD Bio-sciences 342003
Fluorescent microbeads (1 um) Molecular Probes  T8880
Polysterene counting beads (7 um) Bangs laboratories PS06N/6994
Polypropylene FACS tubes Falcon 352058
1 ml pipet Fisher 13-678-11B
5 ml pipet Falcon 357543
25 ml pipet Ultident DL-357551
1,5 ml conical polypropylene micro tube Sarstedt 72.690
15 ml conical polypropylene tube Sarstedt 62.554.205
50 ml conical polypropylene tube Sarstedt 62.547.205
50 ml high speed polypropylene copolymer tube Nalgene 3119-0050
250 ml high speed polypropylene bottle Beckman 356011
Protein assay (Bradford assay) Bio-Rad Laboratories 500-0006
Protein assay standard II Bio-Rad Laboratories 500-0007
Test tube 16×100 VWR 47729-576
Test tube 12×75 Ultident 170-14100005B
Cell incubator  Mandel Heracell 150
Low speed centrifuge IEC Centra8R
High speed centrifuge Beckman Avanti J8
High speed rotor for 250ml bottle Beckman JLA16.250
High speed rotor for 50ml tube Beckman JA30.50
Fow cytometry  BD Bio-sciences FACS Calibur
Spectrophotometer Beckman Series 600
Bronchial tissue explants and sections 
C57BL/6 mice (5-7 weeks old)   Charles River Laboratories, Inc. 
Mouse Airway PrimaCell™ System: CHI Scientific, Inc. 2-82001
 Rib-Back Carbon Steel Scalpel Blades Becton Dickinson AcuteCare 371310 #10
Scalpel Handle Fine Science Tools Inc.  10003-12 #7
phase-contrast inverted microscope Olympus Optical CO., LTD.    CK2
high O2 gas mixture  VitalAire Canada Inc.
modular incubator chamber Billups-Rothenberg Inc. MIC-101
MaxQ 4000 incubated orbital shaker Barnstead Lab-Line,  SHKA4000-7
12-well tissue culture plate Becton Dickinson and Company 353043
Plastic tissue culture dishes (100 mm) Sarstedt, Inc. 83.1802
Surgical scissors Fine Science Tools Inc.  14060-09 Straight, sharp, 9cm longth
Half-curved Graefe forceps Fine Science Tools Inc.  11052-10
humidified CO2 incubator Mandel Scientific Company Inc.  SVH-51023421
 Histopathological examination 
formalin formaldehyde Sigma-Aldrich, Inc.  HT5011
paraffin Fisher scientific  International, Inc. T555
ethyl alcohol Merck KGaA, Darmstadt EX0278-1
 glutaraldehyde  Sigma-Aldrich, Inc.  G6403
Cacodylate Sigma-Aldrich, Inc.  31533
microscope slides VWR Scientific Inc.  48300-025 25x75mm
Xylene Fisher scientific  International, Inc. X5-4
Mayer's hematoxylin Sigma-Aldrich, Inc.  MHS16 Funnel with filter paper  
HCl  Fisher scientific  International, Inc.   A144s-500
eosin  Sigma-Aldrich, Inc.  HT110116 Funnel with filter paper  
Permount™ Mounting Medium Thermo Fisher Scientific Inc.  SP15-100
glass coverslip surgipath medical industries, Inc. 84503 24×24 #1 
TUNEL detection kit In Situ Cell Death Detection, POD 11 684 817 910
oven Despatch Industries Inc. LEB-1-20
rotary Microtome Leica Microsystems Inc. RM2145
filter paper Whatman International Ltd. 1003150 #3
Microscope Nikon Imaging Japan Inc. E800
staining dish complete Wheaton Industries, Inc. 900200 including dish, rack, cover
1.5 ml eppendorf tube Sarstedt Inc.  72.69 39x10mm
Orbital and Reciprocating Water Bath ExpotechUSA ORS200
phosphate buffered saline   GIBCO 14190-144
fume hood Nicram RD Service 3707E

References

  1. Tushuizen, M. E., Diamant, M., Sturk, A., Nieuwland, R. Cell-derived microparticles in the pathogenesis of cardiovascular disease: friend or foe. Arterioscler Thromb Vasc Biol. 31 (1), 4-9 (2011).
  2. Martinez, M. C., Tual-Chalot, S., Leonetti, D., Andriantsitohaina, R. Microparticles: targets and tools in cardiovascular disease. Trends Pharmacol Sci. 32 (11), 659-665 (2011).
  3. Benameur, T., Andriantsitohaina, R., Martinez, M. C. Therapeutic potential of plasma membrane-derived microparticles. Pharmacol Rep. 61 (1), 49-57 (2009).
  4. Yang, C., et al. Lymphocytic microparticles inhibit angiogenesis by stimulating oxidative stress and negatively regulating VEGF-induced pathways. Am J Physiol Regul Integr Comp Physiol. 294 (2), 467-476 (2008).
  5. Yang, C., Gagnon, C., Hou, X., Hardy, P. Low density lipoprotein receptor mediates anti-VEGF effect of lymphocyte T-derived microparticles in Lewis lung carcinoma cells. Cancer Biol Ther. 10 (5), 448-456 (2010).
  6. Angelillo-Scherrer, A. Leukocyte-derived microparticles in vascular homeostasis. Circ Res. 110 (2), 356-369 (2012).
  7. Maeno, T., et al. CD8+ T Cells are required for inflammation and destruction in cigarette smoke-induced emphysema in mice. J Immunol. 178 (12), 8090-8096 (2007).
  8. Qiu, Q., Xiong, W., Yang, C., Gagnon, C., Hardy, P. Lymphocyte-derived microparticles induce bronchial epithelial cells’ pro-inflammatory cytokine production and apoptosis. Mol Immunol. 55 (3-4), 220-230 (2013).
  9. Martin, S., et al. Shed membrane particles from T lymphocytes impair endothelial function and regulate endothelial protein expression. Circulation. 109 (13), 1653-1659 (2004).
  10. Shet, A. S., et al. Sickle blood contains tissue factor-positive microparticles derived from endothelial cells and monocytes. Blood. 102 (7), 2678-2683 (2003).
  11. Mause, S. F., Weber, C. Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ Res. 107 (9), 1047-1057 (2010).
  12. Yang, C., et al. Anti-proliferative and anti-tumour effects of lymphocyte-derived microparticles are neither species- nor tumour-type specific. J Extracell Vesicles. 3, (2014).
  13. Soleti, R., et al. Microparticles harboring Sonic Hedgehog promote angiogenesis through the upregulation of adhesion proteins and proangiogenic factors. Carcinogenesis. 30 (4), 580-588 (2009).
check_url/fr/52651?article_type=t

Play Video

Citer Cet Article
Yang, C., Xiong, W., Qiu, Q., Tahiri, H., Gagnon, C., Liu, G., Hardy, P. Generation of Lymphocytic Microparticles and Detection of their Proapoptotic Effect on Airway Epithelial Cells. J. Vis. Exp. (96), e52651, doi:10.3791/52651 (2015).

View Video