Summary

利用衣壳抗原掺入战略的腺病毒血清型5载体疫苗方法的发展

Published: May 06, 2015
doi:

Summary

在这里,我们提出了一个协议,以产生证明性的原则,二价5型腺病毒(Ad5的)载体的Ad5 / H5-HVR1-KWAS-HVR5-他6通过利用衣壳抗原掺入策略。此载体被证明表现出定性的健身,能力逃脱的Ad5阳性血清在体外 ,和抗原性以及免疫原性的结合抗原。

Abstract

腺病毒血清型5(Ad5的)已被广泛地修改传统的转基因方法,所述疫苗开发。在临床试验中,这些传统改性Ad5载体的疗效降低可能主要与相关Ad5的预存免疫性(PEI)的大多数人口中。要通过解决的Ad5 PEI的担忧推动的Ad5载体疫苗的开发,创新的衣壳抗原掺入战略已经就业。通过这一战略的优点,的Ad5向量,我们首先构建了六邻体穿梭质粒HVR1-KWAS-HVR5-他6 / pH5S通过亚克隆高变区(HVR)1六邻体成以前构建穿梭质粒HVR5-他6 / pH5S,其中有他的6标签纳入HVR5。合成这种含有HIV抗原决定簇ELDKWAS HVR1 DNA片段。 HVR1-KWAS-HVR5-他6 / pH5S然后线性化和共转化用线性骨架质粒PAD5 /ΔH5(GL),用于同源重组。此重组质粒PAD5 / H5-HVR1-KWAS-HVR5-他6转染到细胞中,以产生病毒载体的Ad5 / H5-HVR1-KWAS-HVR5-他6。这个载体被验证,以具有通过病毒物理滴度(VP / ml)的指示的定性健身,感染滴度(IP / ml)和相应的VP / IP的比率。两者的HIV抗原决定簇和His 6标签进行表面暴露在Ad5的衣壳,并保留其自己的表位特异性的抗原性。一中和试验表明该向量价由Ad5的阳性血清体外规避中和能力。免疫的小鼠表现出强劲的体液免疫特定的生成艾滋病毒抗原表位和他的6。证明型原理这项研究表明,与衣壳抗原掺入战略相关联的协议,可以切实通过改变不同的衣壳蛋白用于中的Ad5载体疫苗的产生。这个协议甚至可以为further修改为稀土血清型腺病毒载体疫苗的产生。

Introduction

人腺病毒(AD)是一种中型,无包膜病毒含有双链DNA基因组的二十面体衣壳。广告属于腺病毒家族,与分类分为七组(A至G)。每个组都包含不同的血清型病毒。其中,腺病毒血清型5(Ad5的)从C组一直是最广泛研究和应用最广泛的用于矢量化方法,如基因治疗和疫苗接种。

传统的转基因策略已经被开发并应用于Ad5的修改,它的特点是由该病毒早期基因与基因的感兴趣的位移,并在宿主中的感兴趣基因的聚焦表达。例子是pENV9 /Ad5hrΔE3通过与猴免疫缺陷病毒1转基因替换早期基因3(E3)的建设,AdCMVGag通过与人类免疫缺陷的gag基因替换早期基因1(E1)的建设病毒(HIV)2,和广告LAC的Z用紫胶 ž基因3 E1更换施工。对Ad5的传统的转基因战略的广泛应用取决于以下优点:广泛用于Ad5的,对病毒和病毒传播的可行的基因工程,外源基因插入大量的住宿和4,5的Ad5的安全主机。然而,的Ad5向量临床治疗通过使用这种策略的功效降低一直是主要瓶颈,已经映射到主要与Ad5的PEI有关,因为Ad5的是广大儿童和成人4,6中如此普遍。

为了克服的Ad5的主要瓶颈,首要目标是开发一种替代策略规避的Ad5 PEI。先天免疫7,适应性免疫诸如中和抗体(NAb的)8-10和CD8 + T细胞应答10对Ad5的已示出的共同ntribute与Ad5 PEI,与Ad5的出现的NAb发挥贡献的主导作用与Ad5 PEI 10,11。此外,Ad5的NABS位于衣壳蛋白靶表位,包括主要的蛋白质六邻体,纤维和五邻体基底。其中,六邻体是的Ad5的NAbs 8,11-13的主要对象。基于这些发现,一个创新的衣壳抗原掺入战略已经出台。这种新颖的策略突出蛋白的感兴趣上的Ad5衣壳蛋白,其移位或屏蔽的Ad5中和表位的置换或掺入,导致降低识别由所述的NAb高效Ad5载体给药。值得注意的是,这一战略是有竞争力的,因为它也可以帮助主机引起强大的体液免疫和有效的细胞免疫功能通过直接抗原呈递的感兴趣的免疫系统4,14,15。基于这一战略,分子克隆和重组广告病毒载体抢救可分为结构分为四个主要步骤:(a)由任一聚合酶链式反应(PCR)或合成制备的基因的感兴趣的片段; (b)基因片段的连接到包含基因的感兴趣的片段和同源臂到腺病毒主链的穿梭质粒; (c)该同源重组通过共转化含基因的感兴趣的片段与线性化骨架质粒PAD5 /ΔH5(GL)16穿梭质粒; (四)线性化重组腺病毒质粒的转染营救与抗原的感兴趣并入重组Ad载体。

我们的团队和其他一些人已经扩展这种替代广告纳入战略针对不同传染病病原体广告载体疫苗的开发。我们报道了重组腺病毒载体的新一代广告-HVR1-LGS-他6 -V3通过将他标记的HIV-1抗原V3成的Ad5六邻体(hexon5)的HVR1区域。这个生成的载体引发STR具体到V3表位4翁体液免疫应答。我们还报道的Ad5 / HVR2-MPER-L15ΔE1的发展通过将HIV-1的近膜胞外区(MPER)到hexon5 2的HVR2区域。此外,周博士的研究小组已经使用这种广告策略结合的优势,开发广告3型(Ad3的)载体疫苗, ,病毒载体R1SP70A3的通过将肠道病毒71型的中和表位SP70到Ad3的的HVR1的一代六邻体(hexon3)。 R1SP70A3产生了浓厚的NAbs和IFN-γ生产特定的抗原表位SP70,从而导致对肠病毒71型的挑战15率高保护。

对于技术参考的目的,我们的研究采取了定性衣壳抗原掺入战略的优势,专注于二价Ad5载体的Ad5 / H5-HVR1-KWAS-HVR5-他6的产生通过将一种HIV-1抗原进入HVR1一个DA他的标签为hexon5的HVR5。生成的病毒载体也被免疫评价。该衣壳抗原掺入策略可以被用来实现对不同传染病的Ad5疫苗向量方法的制定。

Protocol

阿拉巴马大学伯明翰分校机构动物使用及护理委员会批准使用小鼠作为下批准的协议号101109272描述。 1.遗传结构改良质粒PAD5 / H5-HVR1-KWAS-HVR5-他6与衣壳抗原掺入战略穿梭质粒的构建HVR1-KWAS-HVR5-他6 / pH5S 交货含有合成的DNA序列HVR1-KWAS的限制酶位点AGEI之间hexon5基因的AccI质粒。 消化6微克的合成片段(HVR1-KWAS)与酶AGEI(6单位)和的AccI(6单位)…

Representative Results

所述抗原衣壳-团策略( 图1A)被用于生成二价的Ad5病毒载体的Ad5 / H5-HVR1-KWAS-HVR5-他6。首先,穿梭质粒HVR1-KWAS-HVR5-他6 / pH5S被亚克隆HVR1-KWAS片段插入先前构建穿梭质粒HVR5-他6/17 pH5S构建。其次,质粒PAD5 / H5-HVR1-KWAS-HVR5-他6月 14日通过“的EcoRI-HVR1-KWAS-HVR5-的His6-PmeI位”的片段与SwaI位线性化PAD5 /ΔH5之间的同源重组构建(GL )16( <stro…

Discussion

上的Ad5修改为疫苗的发展传统的转基因策略的应用已经被降低主要是由于与Ad5的PEI 4,6相关联的瓶颈。这个瓶颈可以通过应用替代抗原衣壳-团策略( 图1A)被部分地减小,因为这种策略可以通过的Ad5的NAb逃避中和通过与抗原的感兴趣取代的Ad5的中和表位,以及促进健壮免疫力的产生到结合抗原的感兴趣。在这项研究中,修改后的二价病毒载体的产生的Ad5 / H5-HVR1-KWAS-HVR5-他6<…

Divulgations

The authors have nothing to disclose.

Acknowledgements

卫生部授予5T32AI7493-20和5R01AI089337-03部分这项工作是支持国家机构。该资助者在研究设计,数据收集和分析,发布决定,或准备的手稿没有作用。

Materials

1x DPBS Thermo Scientific SH30256.01 for cell spliting 
10x DPBS Thermo Scientific SH30378.02 for dialysis buffer preparation
glycerol SIGMA G5516-1L for dialysis buffer preparation
SDS BIO-RAD 161-0301 for virus lysis buffer preparation
Fetal Bovine Serum (FBS) Thermo Scientific SH30910.03 component of culture medium
100X Non-Essential Amino Acids  Thermo Scientific SH30238.01 component of culture medium
200mM/L L-glutamine Cellgro 25-005-CI component of culture medium
penicillin/streptomycin solution  Cellgro 30-002-CI component of culture medium
DMEM with high glucose Thermo Scientific SH30081.01 for HEK293 cell culture
Minimum Essential Medium Eagle SIGMA M5650 for HeLa cell culture
phenol:chloroform:isoamyl alcohol  SIGMA P3803-100ML for large size of DNA purification
cesium chloride  Research Products International Corp. C68050 for virus purificiation
HEPES Cellgro 25-060-CI for CsCl solution preparation
HEK293 ATCC 51-0036 for virus rescue and upscale
HeLa ATCC CCL-2 for neutralization assay
T-25 flask Thermo Scientific 156367 for cell culture 
T-75 flask CORNING 430641 for cell culture 
T-175 flask Thermo Scientific 159910 for cell culture 
Ultracentrifuge BECKMAN NA for virus purification
Ultracentrifuge tube BECKMAN 344059 for virus purification
dialysis cassette  Thermo Scientific 66380 for virus dialysis
ELISA plate Thermo Scientific 442404 for ELISA
human anti-gp41 (2F5) mAb NIH AIDS Reagent Program 1475 for immunological assays
mouse anti-His tag mAb GenScript A00186 for immunological assays
SOC medium CORNING 46-003-CR for transformation
PCR master mix solution QIAGEN 201445 for PCR
Animal lancet (point length at 5mm) MEDIpoint for mice bleeding 
Biophotometer Eppendorf for virus physical titer titration

References

  1. Cheng, S. M., et al. Coexpression of the simian immunodeficiency virus Env and Rev proteins by a recombinant human adenovirus host range mutant. Journal of virology. 66, 6721-6727 (1992).
  2. Matthews, Q. L., et al. HIV antigen incorporation within adenovirus hexon hypervariable 2 for a novel HIV vaccine approach. PloS one. 5, e11815 (2010).
  3. DeMatteo, R. P., et al. Long-lasting adenovirus transgene expression in mice through neonatal intrathymic tolerance induction without the use of immunosuppression. Journal of virology. 71, 5330-5335 (1997).
  4. Gu, L., et al. A recombinant adenovirus-based vector elicits a specific humoral immune response against the V3 loop of HIV-1 gp120 in mice through the ‘Antigen Capsid-Incorporation’ strategy. Virology journal. 11, 112 (2014).
  5. Matthews, Q. L., Krendelchtchikov, A. L. G., Li, Z. C. Viral Vectors for Vaccine Development. INTECH. , (2013).
  6. Tang, D. C., Zhang, J., Toro, H., Shi, Z., Van Kampen, K. R. Adenovirus as a carrier for the development of influenza virus-free avian influenza vaccines. Expert review of vaccines. 8, 469-481 (2009).
  7. Flatt, J. W., Kim, R., Smith, J. G., Nemerow, G. R., Stewart, P. L. An intrinsically disordered region of the adenovirus capsid is implicated in neutralization by human alpha defensin 5. PloS one. 8, e61571 (2013).
  8. Bradley, R. R., Lynch, D. M., Iampietro, M. J., Borducchi, E. N., Barouch, D. H. Adenovirus serotype 5 neutralizing antibodies target both hexon and fiber following vaccination and natural infection. Journal of virology. 86, 625-629 (2012).
  9. Zaiss, A. K., Machado, H. B., Herschman, H. R. The influence of innate and pre-existing immunity on adenovirus therapy. Journal of cellular biochemistry. 108, 778-790 (2009).
  10. Sumida, S. M., et al. Neutralizing antibodies and CD8+ T lymphocytes both contribute to immunity to adenovirus serotype 5 vaccine vectors. Journal of virology. 78, 2666-2673 (2004).
  11. Sumida, S. M., et al. Neutralizing antibodies to adenovirus serotype 5 vaccine vectors are directed primarily against the adenovirus hexon protein. Journal of immunology. 174, 7179-7185 (2005).
  12. Bradley, R. R., et al. Adenovirus serotype 5-specific neutralizing antibodies target multiple hexon hypervariable regions. Journal of virology. 86, 1267-1272 (2012).
  13. Gahery-Segard, H., et al. Immune response to recombinant capsid proteins of adenovirus in humans: antifiber and anti-penton base antibodies have a synergistic effect on neutralizing activity. Journal of virology. 72, 2388-2397 (1998).
  14. Gu, L., et al. Using multivalent adenoviral vectors for HIV vaccination. PloS one. 8, e60347 (2013).
  15. Tian, X., et al. Protection against enterovirus 71 with neutralizing epitope incorporation within adenovirus type 3 hexon. PloS one. 7, e41381 (2012).
  16. Wu, H., et al. Construction and characterization of adenovirus serotype 5 packaged by serotype 3 hexon. Journal of virology. 76, 12775-12782 (2002).
  17. Wu, H., et al. Identification of sites in adenovirus hexon for foreign peptide incorporation. Journal of virology. 79, 3382-3390 (2005).
  18. Qiu, H., et al. Serotype-specific neutralizing antibody epitopes of human adenovirus type 3 (HAdV-3) and HAdV-7 reside in multiple hexon hypervariable regions. Journal of. 86, 7964-7975 (2012).
  19. Parker, C. E., et al. Fine definition of the epitope on the gp41 glycoprotein of human immunodeficiency virus type 1 for the neutralizing monoclonal antibody 2F5. Journal of virology. 75, 10906-10911 (2001).
  20. Farrow, A. L., et al. Immunization with Hexon Modified Adenoviral Vectors Integrated with gp83 Epitope Provides Protection against Trypanosoma cruzi Infection. PLoS neglected tropical diseases. 8, e3089 (2014).
  21. Krause, A., et al. Epitopes expressed in different adenovirus capsid proteins induce different levels of epitope-specific immunity. Journal of virology. 80, 5523-5530 (2006).
  22. Omori, N., et al. Modification of a fiber protein in an adenovirus vector improves in vitro gene transfer efficiency to the mouse microglial cell line. Neuroscience letters. 324, 145-148 (2002).
  23. Dmitriev, I. P., Kashentseva, E. A., Curiel, D. T. Engineering of adenovirus vectors containing heterologous peptide sequences in the C terminus of capsid protein IX. Journal of virology. 76, 6893-6899 (2002).
  24. Xue, C., et al. Construction and characterization of a recombinant human adenovirus type 3 vector containing two foreign neutralizing epitopes in hexon. Virus research. 183, 67-74 (2014).
  25. Tian, X., et al. Construction and characterization of human adenovirus serotype 3 packaged by serotype 7 hexon. Virus research. 160, 214-220 (2011).
  26. Kim, J. W., et al. An adenovirus vector incorporating carbohydrate binding domains utilizes glycans for gene transfer. PloS one. 8, e55533 (2013).
  27. Vasconcelos, J. R., et al. Pathogen-induced proapoptotic phenotype and high CD95 (Fas) expression accompany a suboptimal CD8+ T-cell response: reversal by adenoviral vaccine. PLoS pathogens. 8, e1002699 (2012).
  28. Matthews, Q. L., et al. Genetic incorporation of a herpes simplex virus type 1 thymidine kinase and firefly luciferase fusion into the adenovirus protein IX for functional display on the virion. Molecular imaging. 5, 510-519 (2006).
check_url/fr/52655?article_type=t

Play Video

Citer Cet Article
Gu, L., Farrow, A. L., Krendelchtchikov, A., Matthews, Q. L. Utilizing the Antigen Capsid-Incorporation Strategy for the Development of Adenovirus Serotype 5-Vectored Vaccine Approaches. J. Vis. Exp. (99), e52655, doi:10.3791/52655 (2015).

View Video