Summary

Mise en place d'un modèle de xénogreffe humain de myélome multiple dans le poulet pour étudier la croissance tumorale, l'invasion et l'angiogenèse

Published: May 01, 2015
doi:

Summary

Les cellules humaines myélome multiple (MM) nécessitent le micro-environnement favorable des cellules mésenchymateuses et des composants de la matrice extracellulaire pour la survie et la prolifération. Nous avons établi un modèle in vivo d'embryons de poulet avec des cellules de myélome et mésenchymateuses humaines greffées à étudier les effets des médicaments contre le cancer sur la croissance tumorale, l'invasion et l'angiogenèse.

Abstract

Le myélome multiple (MM), une maladie des cellules plasmatiques malignes, reste incurable et de nouveaux médicaments sont nécessaires pour améliorer le pronostic des patients. En raison de l'absence du microenvironnement osseux et des facteurs de croissance auto / paracrine des cellules MM humaines sont difficiles à cultiver. Par conséquent, il ya un besoin urgent d'établir une bonne in vitro et dans les systèmes de culture in vivo pour étudier l'action de nouveaux produits thérapeutiques sur les cellules de MM humaines. Ici, nous présentons un modèle à cultiver des cellules du myélome multiple humain dans un environnement 3D complexe in vitro et in vivo. Des lignées cellulaires MM OPM-2 et le milieu RPMI-8226 ont été transfectées pour exprimer le transgène GFP et ont été cultivées en présence de cellules mésenchymateuses humaines et de collagène de type I Matrice sphéroïdes tridimensionnels. En outre, les sphéroïdes ont été greffés sur la membrane chorio-allantoïde (CAM) d'embryons de poulet et la croissance tumorale a été contrôlée par microscopie à fluorescence stéréo. Les deux modèles permettent l'étude de roman dru thérapeutiquegs dans un environnement 3D complexe et la quantification de la masse des cellules tumorales après des greffes homogénéisation dans un transgène GFP spécifique au test ELISA. En outre, les réponses angiogéniques de l'hôte et l'invasion des cellules tumorales dans le tissu de l'hôte sous-jacent peuvent être surveillées quotidiennement par un microscope stéréoscopique et analysés par coloration immunohistochimique à l'encontre des cellules humaines tumorales (Ki-67, CD138, Vimentin) ou des cellules murales hôtes couvrant vaisseaux sanguins (desmine / ASMA).

En conclusion, le système onplant permet d'étudier la croissance des cellules MM et l'angiogenèse dans un environnement 3D complexe et permet le criblage de composés thérapeutiques ciblant la survie et la prolifération des cellules MM.

Introduction

Multiple myeloma (MM) is characterized by proliferation of malignant plasma cells in the bone marrow, bone lesions and immunodeficiency 1. Although new treatment options such as proteasome inhibitors (bortezomib) and immune modulatory drugs (pomalidomide and lenalidomide) are available, MM still remains an incurable malignancy with a grim prognosis 2. The bad prognosis might be explained by the extraordinary heterogeneity of MM cell clones that contributes to variable responses to therapy, in particular under long time treatment and selection pressure of MM clones 3.

Preclinical testing of new drugs and their combinations in vitro and in vivo is a critical and time-consuming step for future drug development. Thus, useful in-vivo models of MM are required to gain a better understanding of the biology of the disease and to enable the discovery of new drugs. Actually, the best xenotransplantation models for hematological malignancies and therapeutics are immune-deficient mice, such as the severe-combined immunodeficient (SCID) mice 4-7, the non-obese diabetic/SCID (NOD/SCID) mice 8,9 or the β-microglobulin-knockout NOD/SCID mice 10,11.

Although murine models of human MM in some aspects can resemble the phenotype of human disease, immune-deficient mice are inbred, therefore simulate only one individual response to a drug and costs are very high. Due to immunosuppression animals require special maintenance conditions and the engraftment of human MM in mice requires 6 weeks to 2 months 9,12, unless cells are grafted directly to the bone marrow using a technically demanding procedure with lower rates of animal survival 7,13. Therefore, new methods using stem-cell based organoid models 14, tissue engineering 15 or sophisticated 3D cell culture models 16 have been established. They will compete in the near future with classical animal experiments for preclinical drug testing, but cannot replace systemic toxicity tests in living organisms.

The chicken embryo has been demonstrated before to be a suitable organism for xenotransplantation of human cells and tissues due to lack of adaptive immune response until hatching 17-19. Moreover, each chicken embryo reflects an individual reaction to applied drugs or tumor cells due to genetic diversity within the chicken population. The chorioallantoic membrane (CAM) is a well-established system to study tumor-dependent angiogenesis 20-22. When solid tumors are grafted to the CAM, they display many characteristics of cancers in vivo, including proliferation, invasion, angiogenesis and metastasis 23-27.

Based on the previous experience of our group with CAM xenograft models20,26,27, a human MM model was established that combines the advantage of a human 3D culture system with the model of ex ovo developing chicken embryos. This MM model system allows real time monitoring of MM growth progression, quantification of cell mass and preclinical drug testing.

Protocol

Selon le droit autrichien, et le Bureau de la protection des animaux de laboratoire des embryons d'oiseaux de services de santé publique des États-Unis ne sont pas considérés comme des animaux vertébrés vivants jusqu'à ce hatching.The NIH Bureau de la protection des animaux de laboratoire a fourni des directives écrites dans ce domaine (http: // www.grants.nih.gov/grants/olaw/references/ilar91.htm et NIH Publication No .: 06-4515). 1. Culture cellulaire et transfection Lentiviral Ligne…

Representative Results

L'analyse in vitro des composés cibles en 3D myélome multiple dosages de sphéroïdes En raison de la limitation de la culture de cellules primaires de MM humaines in vitro, nous avons établi les nouveaux modèles de culture in vitro en 3D pour les lignées cellulaires MM humaines faisant usage d'une matrice de croissance extracellulaire et les cellules de soutien mésenchymateuses humaines primaires de la moelle osseuse (Figure …

Discussion

Le développement de nouveaux agents thérapeutiques pour MM réfractaire nécessite moins de temps et coûteux systèmes in vivo pour évaluer la sensibilité des cellules MM humains aux médicaments. Jusqu'à présent, seulement peu de systèmes in vivo sont disponibles pour l'évaluation préclinique de nouveaux traitements anti-myélome. Tous ont leurs limites pour le criblage à grande échelle de bibliothèques de composés 29.

Les meilleurs modèles actuels pour les cellules de MM …

Divulgations

The authors have nothing to disclose.

Acknowledgements

The authors want to thank Ms. Cornelia Heis for her excellent technical assistance in immunohistochemistry and preparation of chicken embryos. This work was supported by the Austrian Science Fund (FWF Grant No. P19552) and the European Union (EU FP7 project Optatio No: 278570).

Materials

RPMI-8226 cells DSMZ ACC 9 STR profiled
OPM-2 cells DSMZ ACC 50 STR profiled
Human mesenchymal stem cells  PromoCell PC-C-12974
HEK293FT cells  Invitrogen R700-07
RPMI1640 Medium Sigma Aldrich R0883
Fetal Bovine Serum  HyClone ThermoScientific SH30070.03
L-Glut- Pen- Strep solution Sigma G6784
DMEM Medium Gibco 31966
NEAA Sigma Life Sciences M7145
Transfection Medium/Opti-MEM  Gibco 51985
eGFP lentiviral particles GeneCopoeia LPP-EGFP-LV105 Ready to use viral particles
pLenti6/V5Dest6 eGFP vector Invitrogen PN 35-1271 from authors
ViralpowerTM packaging mix  Invitrogen P/N 35-1275
Transfection reagent/ Lipofectamin 2000 Invitrogen 11668-027
Blasticidin Invitrogen R210-01
Neomycin Biochrom A2912
Collagen-Type1  Rat Tail BD Biosciences 354236
DMEM powder Life Technologies Art.Nr. 10338582
plitidepsin Pharmamar
bortezomib LKT Lab., Inc. B5871
SPF-white hen eggs Charles River Fertilized  white Leghorn  chicken eggs
Plastic weighing boats neoLab Art.Nr. 1-1125 for ex-ovo culture
Petridish square (Lids) Simport D210-16 for ex-ovo culture
RIPA Buffer (10x) Cell Signaling #9806
Protease Inhibitor Tablets Roche 11 836 170 001
Complete Mini EDTA-free
GFP ELISA Cell Biolabs, Inc. AKR-121
Histocette II Simport M493-6
PFA  37% Roth 7398.1
DPBS Lonza BE17-512F
Ethanol absolut Normapur 20,821,321
Roti-Histol Roth Art.Nr.6640.4
Paraplast Sigma A6330
SuperFrost Microscope Slides R. Langenbrinck  Art.-Nr.
Labor- u. Medizintechnik 03-0060
DakoCytomation Wash Buffer 10x DakoCytomation Code-Nr.
S 3006
Target Retrieval Solution (10x)  pH 6,1 DAKO Code-Nr.
S 1699
H2O2 Merck
m-a-hu ASMA clone 1A4 DAKO M0851
m-a-hu CD138 clone MI15 DAKO M7228
m-a-hu Vimentin clone V9 DAKO M0725
m-a-hu Desmin clone D33 DAKO  M0760
m-a-hu Ki67  clone MIB-1   DAKO  M7240
biotinylated goat- anti-mouse IgG Vector Laboratories Inc. BA-9200
Vectastain Elite ABC Kit Vector Laboratories Inc. # PK-6100
FAST DAB Tablet Set. Sigma Biochemicals # D4293
Mayer’s haemalaun solution Merck 1,092,490,500
Roti Histokitt Roth Art.Nr.6638.2
Bench top rotary microtome Thermo Electron, Shandon Finesse ME+
Tissue embedding station Leica, TP1020
Egg-Incubator Grumbach  BSS160
Stereo fluorescence microscope equipped with an connected with a digital camera (Olympus E410) and flexible cold light  Olympus, SZX10
Ultra Turrax  IKA T10 Homogenizer

References

  1. Kuehl, W. M., Bergsagel, P. L. Multiple myeloma: evolving genetic events and host interactions. Nat.Rev.Cancer. 2 (3), 175-187 (2002).
  2. Kumar, S. K., Gertz, M. A. Risk adapted therapy for multiple myeloma: back to basics. Leuk.Lymphoma. , (2014).
  3. Prideaux, S. M., Conway, O. E., Chevassut, T. J. The genetic architecture of multiple myeloma. Adv.Hematol. 2014, 864058 (2014).
  4. Chauhan, D., et al. A novel orally active proteasome inhibitor ONX 0912 triggers in vitro and in vivo cytotoxicity in multiple myeloma. Blood. 116 (23), 4906-4915 (2010).
  5. Kuehl, W. M. Mouse models can predict cancer therapy. Blood. 120 (2), 238-240 (2012).
  6. Nefedova, Y., Gabrilovich, D. Mechanisms and clinical prospects of Notch inhibitors in the therapy of hematological malignancies. Drug Resist.Updat. 11 (6), 210-218 (2008).
  7. Yaccoby, S., Barlogie, B., Epstein, J. Primary myeloma cells growing in SCID-hu mice: a model for studying the biology and treatment of myeloma and its manifestations. Blood. 92 (8), 2908-2913 (1998).
  8. Dazzi, F., et al. Normal and chronic phase CML hematopoietic cells repopulate NOD/SCID bone marrow with different kinetics and cell lineage representation. Hematol.J. 1 (5), 307-315 (2000).
  9. Lock, R. B., et al. The nonobese diabetic/severe combined immunodeficient (NOD/SCID) mouse model of childhood acute lymphoblastic leukemia reveals intrinsic differences in biologic characteristics at diagnosis and relapse. Blood. 99 (11), 4100-4108 (2002).
  10. Feuring-Buske, M., et al. Improved engraftment of human acute myeloid leukemia progenitor cells in beta 2-microglobulin-deficient NOD/SCID mice and in NOD/SCID mice transgenic for human growth factors. Leukemia. 17 (4), 760-763 (2003).
  11. Pearce, D. J., et al. AML engraftment in the NOD/SCID assay reflects the outcome of AML: implications for our understanding of the heterogeneity of AML. Blood. 107 (3), 1166-1173 (2006).
  12. Li, M., et al. Combined inhibition of Notch signaling and Bcl-2/Bcl-xL results in synergistic antimyeloma effect. Mol.Cancer Ther. 9 (12), 3200-3209 (2010).
  13. Tassone, P., et al. A clinically relevant SCID-hu in vivo model of human multiple myeloma. Blood. 106 (2), 713-716 (2005).
  14. Ranga, A., Gjorevski, N., Lutolf, M. P. Drug discovery through stem cell-based organoid models. Adv.Drug Deliv.Rev. 69-70, 19-28 (2014).
  15. Pereira, R. F., Barrias, C. C., Granja, P. L., Bartolo, P. J. Advanced biofabrication strategies for skin regeneration and repair. Nanomedicine.(Lond). 8 (4), 603-621 (2013).
  16. Fischbach, C., et al. Engineering tumors with 3D scaffolds). Nat.Methods. 4 (10), 855-860 (2007).
  17. Boulland, J. L., Halasi, G., Kasumacic, N., Glover, J. C. Xenotransplantation of human stem cells into the chicken embryo. J.Vis.Exp. (41), (2010).
  18. Deryugina, E. I., Quigley, J. P. Chapter 2. Chick embryo chorioallantoic membrane models to quantify angiogenesis induced by inflammatory and tumor cells or purified effector molecules. Methods Enzymol. 444, 21-41 (2008).
  19. Deryugina, E. I., Quigley, J. P. Chick embryo chorioallantoic membrane model systems to study and visualize human tumor cell metastasis. Histochem.Cell Biol. 130 (6), 1119-1130 (2008).
  20. Kern, J., et al. GRP-78 secreted by tumor cells blocks the antiangiogenic activity of bortezomib. Blood. 114 (18), 3960-3967 (2009).
  21. Ribatti, D., Nico, B., Vacca, A., Presta, M. The gelatin sponge-chorioallantoic membrane assay. Nat.Protoc. 1 (1), 85-91 (2006).
  22. Ribatti, D. The chick embryo chorioallantoic membrane as a model for tumor biology. Exp.Cell Res. , (2014).
  23. Dohle, D. S., et al. Chick ex ovo culture and ex ovo CAM assay: how it really works. J.Vis.Exp. (33), (2009).
  24. Kobayashi, T., et al. A chick embryo model for metastatic human prostate cancer. Eur.Urol. 34 (2), 154-160 (1998).
  25. Koop, S., et al. Fate of melanoma cells entering the microcirculation: over 80% survive and extravasate. Cancer Res. 55 (12), 2520-2523 (1995).
  26. Martowicz, A., Spizzo, G., Gastl, G., Untergasser, G. Phenotype-dependent effects of EpCAM expression on growth and invasion of human breast cancer cell lines. BMC.Cancer. 12, 501 (2012).
  27. Martowicz, A., et al. EpCAM overexpression prolongs proliferative capacity of primary human breast epithelial cells and supports hyperplastic growth. Mol.Cancer. 12, 56 (2013).
  28. Geraerts, M., Willems, S., Baekelandt, V., Debyser, Z., Gijsbers, R. Comparison of lentiviral vector titration methods. 6, 34 (2006).
  29. Farnoushi, Y., et al. Rapid in vivo testing of drug response in multiple myeloma made possible by xenograft to turkey embryos. Br.J.Cancer. 105 (11), 1708-1718 (2011).
  30. Wunderlich, M., Krejci, O., Wei, J., Mulloy, J. C. Human CD34+ cells expressing the inv(16) fusion protein exhibit a myelomonocytic phenotype with greatly enhanced proliferative ability. Blood. 108 (5), 1690-1697 (2006).
  31. Hideshima, T., Mitsiades, C., Tonon, G., Richardson, P. G., Anderson, K. C. Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat.Rev.Cancer. 7 (8), 585-598 (2007).
  32. Parikh, M. R., Belch, A. R., Pilarski, L. M., Kirshner, J. A three-dimensional tissue culture model to study primary human bone marrow and its malignancies. J.Vis.Exp. (85), (2014).
  33. Schuler, J., Ewerth, D., Waldschmidt, J., Wasch, R., Engelhardt, M. Preclinical models of multiple myeloma: a critical appraisal. Expert.Opin.Biol.Ther. 13, S111-S123 (2013).
  34. Kirshner, J., et al. A unique three-dimensional model for evaluating the impact of therapy on multiple myeloma. Blood. 112 (7), 2935-2945 (2008).
  35. Jilani, S. M., et al. Selective binding of lectins to embryonic chicken vasculature. J.Histochem.Cytochem. 51 (5), 597-604 (2003).
check_url/fr/52665?article_type=t

Play Video

Citer Cet Article
Martowicz, A., Kern, J., Gunsilius, E., Untergasser, G. Establishment of a Human Multiple Myeloma Xenograft Model in the Chicken to Study Tumor Growth, Invasion and Angiogenesis. J. Vis. Exp. (99), e52665, doi:10.3791/52665 (2015).

View Video