Summary

Biolistic Transformasjon av en Fluorescent Tagged Gene inn i Opportunistic Fungal Patogen<em> Cryptococcus neoformans</em

Published: March 19, 2015
doi:

Summary

Biolistic transformasjon er en metode som brukes til å generere stabil integrering av DNA inn i genomet til de opportunistiske patogener Cryptococcus neoformans gjennom homolog rekombinasjon. Vi vil demonstrere biolistic transformasjon av en konstruksjon, som har genet som koder acetat kinase kondensert til den fluorescerende tag mCherry inn C. neoformans.

Abstract

Den basidiomycet Cryptococcus neoformans, en invasiv opportunistisk patogen av sentralnervesystemet, er den hyppigste årsaken til sopp hjernehinnebetennelse på verdensbasis som resulterer i mer enn 625 000 dødsfall per år på verdensbasis. Selv elektroporering har blitt utviklet for omdanning av plasmider i Cryptococcus, gir bare biolistic levering av en effektiv måte å omdanne lineært DNA som kan bli integrert inn i genomet ved homolog rekombinasjon.

Acetat har vist seg å være en stor fermenteringsprodukt under cryptococcal infeksjon, men betydningen av dette er ennå ikke kjent. En bakteriell vei består av enzymene xylulose-5-fosfat / fruktose-6-fosfat phosphoketolase (Xfp) og acetat kinase (ACK) er en av tre mulige veier for acetat produksjon i C. neoformans. Her demonstrerer vi biolistic transformasjon av en konstruksjon,som har genet som koder Ack fusjonert til det fluorescerende tag mCherry, inn C. neoformans. Vi deretter bekrefte integrering av ACK -mCherry fusjon inn i ACK locus.

Introduction

Cryptococcus neoformans, an invasive opportunistic pathogen of the central nervous system, is the most frequent cause of fungal meningitis resulting in more than 625,000 deaths per year worldwide 1. Acetate has been shown to be a major fermentation product during cryptococcal infection 2,3,4, and genes encoding enzymes from three putative acetate-producing pathways have been shown to be upregulated during infection 5. This suggests that acetate production and transport may be a necessary and required part of the pathogenic process; however, the significance of this is not yet understood. One possible pathway for acetate production is the xylulose 5-phosphate/fructose 6-phosphate phosphoketolase (Xfp) – acetate kinase (Ack), a pathway previously thought to be present only in bacteria but recently identified in both euascomycete as well as basidiomycete fungi, including C. neoformans 6.

To determine the localization of these enzymes of this pathway in the cell, a construct carrying a neomycin resistance gene downstream of an ACK gene fusion to the fluorescent tag mCherry (ACK:mCherry:Neo) will be introduced into C. neoformans using the well-established method of biolistic transformation 7,8. Although electroporation is an efficient method for transformation of plasmids that will be maintained as episomes into Cryptococcus 9, it is not useful in creating stable homologous transformants 8. Only biolistic delivery using a gene gun provides an effective means to transform linear DNAs that will be integrated into the genome by homologous recombination. For example, Edman et al. showed that of the transformants resulting from electroporation of a plasmid-borne URA5 selectable marker into C. neoformansura5 mutants, just 0.001 to 0.1% of transformants were stable 9. Chang et al. achieved just a 0.25% stable transformation efficiency using electroporation to reconstitute capsule production in an acapsular mutant 10. Unlike electroporation, biolistic transformation has been shown to result in stable transformation efficiency of 2-50% depending on the gene that is being altered 7,8,11.

This visual experiment will provide a step-by-step demonstration of biolistic transformation of the linear ACK:mCherry:Neo DNA construct into C. neoformans, and will describe how to confirm its proper integration via homologous recombination into the ack locus. The protocol demonstrated here is a modification of the method developed in the Perfect laboratory 8.

Protocol

MERK: Den generelle ordningen med denne protokollen er skissert i figur 1. 1. C. neoformans Forberedelse For hver transformasjon reaksjon, vokser en 2-3 ml O / N kultur av C. neoformans i YPD-medium ved 30 ° C risting ved 250 rpm. Sentrifuger O / N kultur i 5 min ved 900 x g ved 10 ° C, og supernatanten kastes. Resuspender cellepelleten i hver 300 ul av gjær Pepton Dextrose (YPD) medium. Ved hjelp av glassperler, …

Representative Results

En vellykket biolistic transformasjon av C. neoformans kan oppnås ved å følge denne protokoll ordningen (figur 1). Med biolistic transformasjon, er en vellykket shoot av de belagte gull perler angitt med en gullring synlig på tallerkenen etter at DNA er skutt (Figur 2A). Kolonier skal vises i løpet av 4 til 5 dager da til venstre ved romtemperatur etter plating de gjen celler fra YPD + 1M sorbitol plater på selektive medier. Transformasjon av 2 pg av DNA bør resultere i …

Discussion

Utilizing this protocol, biolistic transformation can be accomplished in which linear DNA is integrated into a desired locus in the Cryptococcus neoformans genome by homologous recombination. Certain steps in the protocol can have a dramatic effect on the effectiveness/efficiency of the transformation. For a successful transformation, it is imperative that the DNA utilized in the shoot has a concentration of at least 1 µg. However, the volume of DNA added to the gold beads can be increased in the chance the…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Dette arbeidet ble støttet av utmerkelser fra National Science Foundation (Award # 0920274) og South Carolina Experiment Station Prosjekt SC-1700340. Dette papiret isTechnical bidrag nr 6283 av Clemson University Experiment Station. Forfatterne takker Dr. Lukasz Kozubowski for hans nyttige råd i utviklingen av denne endelige protokollen og Dr. Cheryl Ingram-Smith, Katie Glenn, og Grace Kisirkoi for deres kritisk lesing av manuskriptet.

Materials

Product Company Catalog # Website
0.6 μm gold beads Bio-Rad 165-2262 http://www.bio-rad.com
Spermadine-free base Sigma- Aldrich S0266 https://www.sigmaaldrich.com
G418 – Sulfate (Neomycin) Gold Biotechnology G-418-10 www.goldbio.com
Hygromycin Gold Biotechnology H-270-1 www.goldbio.com
1350 psi Rupture Discs Bio-Rad 165-2330 http://www.bio-rad.com
Stopping Screens Bio-Rad 165-2336 http://www.bio-rad.com
Macrocarriers discs Bio-Rad 165-2335 http://www.bio-rad.com
YPD Broth Becton Dickinson & Co. 242820 www.bd.com
Agar Becton Dickinson & Co. 214530 www.bd.com
Sorbitol Fisher Scientific BP439 http://www.fishersci.com
PDS-1000/He System Bio-Rad 165-2257 http://www.bio-rad.com
Microscope Zeiss Axio http://www.zeiss.com/microscopy
KOD One Step PCR Kit EMD Millipore 71086-4 http://www.emdmillipore.com
One Step RT-PCR Kit Qiagen 210212 www.qiagen.com
Wizard Genomic DNA Purification Kit Promega A1120 www.promega.com
RNeasy Mini Kit Qiagen 74104 www.qiagen.com
Mini Beadbeater – 1 BioSpecs 3110BX http://www.biospec.com
Microfuge 18 Centrifuge Beckman Coulter F241.5P www.beckmancoulter.com
Microplate Spectrophotometer BioTek EPOCH www.biotek.com

References

  1. Price, M. S., et al. Cryptococcusneoformans requires a functional glycolytic pathway for disease but not persistence in the host. MBio. 2, e00103-e00111 (2011).
  2. Bubb, W. A., et al. Heteronuclear NMR studies of metabolites produced by Cryptococcusneoformans in culture media: identification of possible virulence factors. Magn Reson Med. 42, 442-453 (1999).
  3. Himmelreich, U., et al. Identification of metabolites of importance in the pathogenesis of pulmonary cryptococcoma using nuclear magnetic resonance spectroscopy. Microbes Infect. 5, 285-290 (2003).
  4. Wright, L., et al. Metabolites released by Cryptococcusneoformans var. neoformans and var. gattii differentially affect human neutrophil function. Microbes Infect. 4, 1427-1438 (2002).
  5. Hu, G., Cheng, P. Y., Sham, A., Perfect, J. R., Kronstad, J. W. Metabolic adaptation in Cryptococcusneoformans during early murine pulmonary infection. Mol Microbiol. 69, 1456-1475 (2008).
  6. Ingram-Smith, C., Martin, S. R., Smith, K. S. Acetate kinase: not just a bacterial enzyme. Trends Microbiol. 14, 249-253 (2006).
  7. Davidson, R. C., et al. Gene disruption by biolistic transformation in serotype D strains of Cryptococcus neoformans. Fungal Genet Biol: FG & B. 29, 38-48 (2000).
  8. Toffaletti, D. L., Rude, T. H., Johnston, S. A., Durack, D. T., Perfect, J. R. Gene transfer in Cryptococcusneoformans by use of biolistic delivery of DNA. J. Bacteriol. 175, 1405-1411 (1993).
  9. Edman, J. C., Kwon-Chung, K. J. Isolation of the URA5 gene from Cryptococcusneoformans var. neoformans and its use as a selective marker for transformation. Mol Cell Biol. 10, 4538-4544 (1990).
  10. Chang, Y. C., Kwon-Chung, K. J. Complementation of a capsule-deficient mutation of Cryptococcus neoformans restores its virulence. Mol Cell Biol. 14, 4912-4919 (1994).
  11. Del Poeta, M., et al. Topoisomerase I is essential in Cryptococcusneoformans: role In pathobiology and as an antifungal target. Génétique. 152, 167-178 (1999).
  12. McClelland, C. M., Chang, Y. C., Kwon-Chung, K. J. High frequency transformation of Cryptococcusneoformans and Cryptococcusgattii by Agrobacteriumtumefaciens. Fungal Genet Biol:FG & B. 42, 904-913 (2005).
  13. Gan, W. B., Grutzendler, J., Wong, W. T., Wong, R. O., Lichtman, J. W. Multicolor ‘DiOlistic’ labeling of the nervous system using lipophilic dye combinations. Neuron. 27, 219-225 (2000).
  14. Nicola, A. M., Frases, S., Casadevall, A. Lipophilic dye staining of Cryptococcusneoformans extracellular vesicles and capsule. Eukaryot Cell. 8, 1373-1380 (2009).
check_url/fr/52666?article_type=t

Play Video

Citer Cet Article
Taylor, T., Bose, I., Luckie, T., Smith, K. Biolistic Transformation of a Fluorescent Tagged Gene into the Opportunistic Fungal Pathogen Cryptococcus neoformans. J. Vis. Exp. (97), e52666, doi:10.3791/52666 (2015).

View Video