Summary

细胞外离子流的使用离子选择性自引用的微电极技术测量

Published: May 03, 2015
doi:

Summary

Transporters in cell membranes allow differential segregation of ions across cell membranes or cell layers and play crucial roles during tissue physiology, repair and pathology. We describe the ion-selective self-referencing microelectrode that allows the measurement of specific ion fluxes at single cells and tissues in vivo.

Abstract

从动物,植物和单细胞细胞通过称为细胞膜分隔来自外部的细胞质屏障包围。细胞层诸如上皮细胞也形成了从外部或多细胞生物体的不同区室分离的内部的屏障。这些障碍的关键特征是跨细胞膜或细胞层离子的微分分布。两个属性允许这种分配:1)膜和上皮显示选择透过性,以特定的离子; 2)离子通过跨细胞膜和细胞层的泵输送。这些特性在维持组织生理发挥关键作用,并作为信令线索受损后,修理过程中,或病理条件下。离子选择性自引用的微电极使离子的具体助熔剂,如钙,在单细胞和组织水平的钾或钠的测量。微电极包含离子载体鸡尾酒是选择性地透过特定离子。内部填充液含有感兴趣的离子的浓度设定。微电极的电势是由离子的外部浓度来确定。作为离子浓度变化时,微电极的电位变化作为离子活度的对数的函数。当来回移动靠近离子源或宿( 在一个浓度梯度由于离子通量)的微电极电位变动在振幅成正比的离子通量/梯度。该放大器放大的微电极信号和输出被记录在计算机中。离子通量然后可以通过使用电极电位变动,微电极的偏移和其​​他参数扩散的Fick定律进行计算,如特定的离子迁移率。在本文中,我们详细介绍的方法使用离子选择性自引用的微电极来测量细胞外离子流D存在一些具有代表性的结果。

Introduction

所有动物细胞通过脂质双层膜,其分离从外部环境细胞质包围。细胞保持电膜电位,负内,通过离子1主动运输。膜电位是该信元可以利用在膜2进行操作的各种分子器件一个储存能量源。神经元和其他可兴奋细胞有很大的膜电位。钠通道的快速开口折叠膜电位(去极化),并产生被沿着神经元2的长度输送的动作电位。除了这些快速电的改变,许多组织和器官的生成和维护显著长期电势。例如,皮肤和角膜上皮产生和由离子向泵浦(主要是钠和氯)3保持反式-上皮电位和细胞外电流。

帐篷“>虽然内源性细胞外电流的测量使用振动探头4-6,并使用微电极系统7-10允许细胞膜和上皮细胞层的电参数的测量,膜或反式上皮电位测量时,它们不提供任何指示所涉及的离子物种。

微电极与选择性离子载体可以测量在溶液特定离子浓度。离子梯度或焊剂可能在不同位置的两个或多个电极来测量。然而,每个探针的固有电压漂移将会不同,从而导致测量不准确,甚至检测的梯度,这是不存在的。在“自参考”模式中使用的单电极,由此它移动在低频率的两个点之间来解决这个问题。现在离子通量可以看出针对相对缓慢和稳定的信号漂移的背景(参见图3B)。 </P>

离子敏感测量系统使用离子选择性自引用的微电极来检测离子接近的组织或单一细胞的小细胞外通量。该系统由一个放大器,其处理从微电极和微步进电机和驱动器的信号,以控制所述微电极的运动。离子选择性微电极和参比电极是闭合电路经由探头前置放大器( 图1A)连接到放大器。计算机软件确定的微电极的运动(频率,距离)的参数,并记录该放大器的输出。步进电机控制通过一个三维微定位器的微电极的运动。低频振动离子选择性微最早是在1990年到具体衡量的钙流11。以及钙,商业访问离子载体鸡尾酒现已作出MICRoelectrodes钠,氯化物,钾,氢,镁,硝酸,铵,氟化锂,或汞敏感。

基本上,自引用离子选择性微电极技术转换溶解在溶液中成电势的特定离子,这可以通过一个电压表来测量的活性。离子载体鸡尾酒是一种不混溶的液体(有机,亲油)相,用离子交换性能。离子载体选择性配合物(绑定)特定离子可逆地与包含在微电极(电解质)水溶液中和水溶液中的微电极浸渍( 图1D),它们之间的传输。此离子转移导致电化学平衡和微电极和参比电极之间的电位的变化由电压表测量。根据能斯特E中的电压是正比于特定离子的活度的对数quation允许离子浓度( 图2AB)的计算。

目前,几个系统允许离子通量测量使用类似的概念或原理。例如,扫描离子选择性电极技术(SIET)12,13或微电极离子通量估计(米非司酮)技术由Newman和Shabala 14-16开发有市售,以确定特定的离子广泛用于研究界通量在细胞膜和组织在各种动物,植物和单个活细胞模型的发生。离子选择性微电极已经用于测量氢,钾和钙通量穿过植物根部17,氯化物磁通在大鼠脑动脉18和花粉管19, ​​氢通量在滑冰视网膜细胞20,在小鼠骨21,各种离子的钙通量在真菌菌丝22和r中通量在过程中单细胞角膜伤口23,终于钙流出愈合12,24。另请参见有关离子选择性自引用的微电极25的详细信息如下评论。

下面的文章详细描述了如何准备和执行使用在单细胞水平离子选择性自引用的微电极技术的内源性细胞外离子流的测量。

Protocol

1.离子选择性自引用的微电极的制备离子选择性微电极的制备热拉薄壁的硼硅毛细管,而不使用微电极拉出器长丝(1.5外径,1.12内径)。 注:此给出提示3-4微米的直径。较小的尖端具有较高的电阻,这使得微电极更容易受到电子噪声,并且也与对离子浓度的变化中以较慢的响应相关联。有用的信息可以在由Smith 等人 26出版的论文中找到。 Silanize电极以使?…

Representative Results

钙内流后出现单细胞打伤24我们以前曾表明。因此,我们要求其他离子流是否在单细胞发生伤人。我们使用X.蟾卵母细胞,一个行之有效的模式,单细胞伤口愈合和30-34电生理记录24,35-39。有趣的是,钾离子多集中内部X.蟾卵母细胞(约110毫米)40比中使用的细胞外溶液(以MMR 1×1毫米),表明钾的时受伤外排。为了证实该假说,我们X的过程中测?…

Discussion

用于体内细胞外离子通量测量成功的最重要的步骤是:减少了噪音,离子选择的微电极和参比电极的正确加工,并将样品和两电极的定位。

为了尽量减少噪音,在记录系统应该有接地(接地)法拉第笼优选与金属平顶(隔振)表,该表也接地。此外,该显微镜底盘还应当接地。电噪声的来源包括光源。光纤“风扇的”光源造成最小的电噪声。最后,保持银线和球团在?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

This work was supported by National Science Foundation grant MCB-0951199, and in part by the NIH grant EY01910, California Institute of Regenerative Medicine grants RB1-01417 and by the Fundação para a Ciência e Tecnologia (FCT) grant SFRH/BD/87256/2012.

Materials

IonAmp   BioCurrents Research Center, Woods Hole, MA, USA none amplifier created by the BioCurrents Research Center, Woods Hole, MA, USA; Similar system can be purchased from “XBL function matters” (http://www.xuyue.org/) or from “YoungerUSA” (http://www.youngerusa.com/) or from Applicable Electronics(http://www.applicableelectronics.com/)
IonAmp32   BioCurrents Research Center, Woods Hole, MA, USA none software created by the BioCurrents Research Center, Woods Hole, MA, USA; Similar system can be purchased from “XBL function matters” (http://www.xuyue.org/) or from “YoungerUSA” (http://www.youngerusa.com/) or from Applicable Electronics(http://www.applicableelectronics.com/)
Headstage pre-amplifier  BioCurrents Research Center, Woods Hole, MA, USA INA116 BSR Voltage Follower INA116, designed by the BioCurrents Research Center, Woods Hole, MA, USA; Similar system can be purchased from “XBL function matters” (http://www.xuyue.org/) or from “YoungerUSA” (http://www.youngerusa.com/) or from Applicable Electronics(http://www.applicableelectronics.com/)
MicroStep Driver  BioCurrents Research Center, Woods Hole, MA, USA none three MicroStep drivers are required for X, Y and Z-positioning; created by the BioCurrents Research Center, Woods Hole, MA, USA; Similar system can be purchased from “XBL function matters” (http://www.xuyue.org/) or from “YoungerUSA” (http://www.youngerusa.com/) or from Applicable Electronics(http://www.applicableelectronics.com/)
Manual micropositioner   World Precision Instruments  Model KITE-R Similar system can be purchased from Applicable Electronics(http://www.applicableelectronics.com/)
Magnetic stand    World Precision Instruments Model M10 Similar system can be purchased from Applicable Electronics(http://www.applicableelectronics.com/)
Vibration isolation table   Newport Inc.      Model VW-3036-OPT-023040 Similar system can be purchased from Applicable Electronics(http://www.applicableelectronics.com/)
Part of three dimentional micropositioner: angle bracket, 90°, slotted faces Newport Inc.      Model 360-90 Assemblage of the three dimantionnal micropositionner requires also Three electric rotary motors for X, Y, Z control, MPH-1 mounting arm with MCA-2 adjustable-angle post and Various Newport connectors and screws to bolt onto vibration table
Part of three dimentional micropositioner: Peg-Joining Dovetail Stage 0.5 inch X Travel Newport Inc.      460PD-X none
Part of three dimentional micropositioner: Quick-Mount Linear Stage, 0.5 inch XY Travel Newport Inc. 460A-XY none
Kwik-Fil thin walled borosilicate glass capillaries without filament  World Precision Instruments  TW150-4 none
Electrode puller  Narishige  PC-10 none
Metal rack Made in-house none Metal electrode holder made in-house by drilling 2 mm wide holes half centimeter spaced in a 10cm by 15cm rectangular base of steel
Oven QL Model 10 Lab Oven none
Silanization solution I  Sigma-Aldrich 85126 Hazardous, handle as recommended by provider 
Glass Petri dish; Pyrex Fisher Scientific 316060 none
Electrode/micropipette storage jar World Precision Instruments  E215 none
Glass dessicator Fisher Scientific 08-595E Contains Drierite dessicant (W.A. Hammond Drierite Co. Ltd, Xenia, OH, USA). Place petroleum jelly on the seal to make it airtight.
Plastic Pasteur pipette  Fisher Scientific 11597722 none
Bunsen burner Fisher Scientific S97329 none
Microscope slide Sigma-Aldrich S8902 none
Straight microelectrode holder Warner Instruments QSW-A15P with a gold 1 mm male connector and Ag/AgCl wire
Straight microelectrode holder  World Precision Instruments MEH3S with a AgCl(Ag+)pellet inside and a gold 2 mm male connector 
6 cm Petri dish VWR 60872-306 none
Nitex mesh Dynamic Aqua-Supply Ltd. NTX750 none
Glue; Loctite epoxy VWR 500043-451 Mix glue and hardener in equal parts in a plastic weighing boat and mix thoroughly. Sets quickly but leave at RT for 24 h for full curing
Deionized water  Sigma-Aldrich 99053 none
Sodium Chloride Sigma-Aldrich S7653 none
Potassium Chloride Sigma-Aldrich P9333 none
Calcium Chloride Sigma-Aldrich C1016 none
Magnesium Chloride Sigma-Aldrich M8266 none
Hepes Sigma-Aldrich H3375 none
Sodium Hydroxyde Sigma-Aldrich S8045 none
Potassium Acetate Sigma-Aldrich P1190 none
Agarose Sigma-Aldrich A9539 none

References

  1. Weber, W. M., Liebold, K. M., Clauss, W. Amiloride-sensitive Na+ conductance in native Xenopus oocytes. Biochimica et biophysica acta. 1239, 201-206 (1995).
  2. McCaig, C. D., Song, B., Rajnicek, A. M. Electrical dimensions in cell science. Journal of cell science. 122, 4267-4276 (2009).
  3. Zhao, M. Electrical fields in wound healing-An overriding signal that directs cell migration. Seminars in cell & developmental biology. 20, 674-682 (2009).
  4. Jaffe, L. F., Nuccitelli, R. An ultrasensitive vibrating probe for measuring steady extracellular currents. The Journal of cell biology. 63, 614-628 (1974).
  5. Reid, B., Nuccitelli, R., Zhao, M. Non-invasive measurement of bioelectric currents with a vibrating probe. Nature protocols. 2, 661-669 (2007).
  6. Reid, B., Zhao, M. Measurement of bioelectric current with a vibrating probe. Journal of visualized experiments : JoVE. , (2011).
  7. Neher, E., Sakmann, B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature. 260, 799-802 (1976).
  8. Moore, J. W. The patch clamp: single-channel recording. Science. 224, 50-51 (1984).
  9. Brown, A. L., Johnson, B. E., Goodman, M. B. Patch clamp recording of ion channels expressed in Xenopus oocytes. Journal of visualized experiments. , (2008).
  10. McCaig, C. D., Robinson, K. R. The ontogeny of the transepidermal potential difference in frog embryos. Developmental biology. 90, 335-339 (1982).
  11. Kuhtreiber, W. M., Jaffe, L. F. Detection of extracellular calcium gradients with a calcium-specific vibrating electrode. The Journal of cell biology. 110, 1565-1573 (1990).
  12. Cai, G., Cresti, M., Moscatelli, A. The use of the vibrating probe technique to study steady extracellular currents during pollen germination and tube growth. Fertilisation in Higher Plants: molecular and cytological aspects. , 235-252 (1999).
  13. Kunkel, J. G., Xu, Y., Shipley, A. M., Feijó, J. A. The use of non-invasive ion-selective microelectrode techniques for the study of plant development. Plant Electrophysiology – Theory and Methods. (ed Volkov AG. , 109-137 (2006).
  14. Ordonez, N. M., Shabala, L., Gehring, C., Shabala, S. Noninvasive microelectrode ion flux estimation technique (MIFE) for the study of the regulation of root membrane transport by cyclic nucleotides. Methods in molecular biology. 1016, 95-106 (2013).
  15. Tegg, R. S., Melian, L., Wilson, C. R., Shabala, S. Plant cell growth and ion flux responses to the streptomycete phytotoxin thaxtomin A: calcium and hydrogen flux patterns revealed by the non-invasive MIFE technique. Plant & cell physiology. 46, 638-648 (2005).
  16. Newman, I. A. Ion transport in roots: measurement of fluxes using ion-selective microelectrodes to characterize transporter function. Plant, cell & environment. 24, 1-14 (2001).
  17. Kochian, L. V., Shaff, J. E., Kuhtreiber, W. M., Jaffe, L. F., Lucas, W. J. Use of an extracellular, ion-selective, vibrating microelectrode system for the quantification of K(+), H (+), and Ca (2+) fluxes in maize roots and maize suspension cells. Planta. 188, 601-610 (1992).
  18. Doughty, J. M., Langton, P. D. Measurement of chloride flux associated with the myogenic response in rat cerebral arteries. The Journal of physiology. 534, 753-761 (2001).
  19. Messerli, M. A., Smith, P. J., Lewis, R. C., Robinson, K. R. Chloride fluxes in lily pollen tubes: a critical reevaluation. The Plant journal : for cell and molecular biology. 40, 799-812 (2004).
  20. Molina, A. J., et al. Neurotransmitter modulation of extracellular H+ fluxes from isolated retinal horizontal cells of the skate. The Journal of physiology. 560, 639-657 (2004).
  21. Marenzana, M., Shipley, A. M., Squitiero, P., Kunkel, J. G., Rubinacci, A. Bone as an ion exchange organ: evidence for instantaneous cell-dependent calcium efflux from bone not due to resorption. Bone. 37, 545-554 (2005).
  22. Lew, R. R. Ionic currents and ion fluxes in Neurospora crassa hyphae. Journal of experimental botany. 58, 3475-3481 (2007).
  23. Vieira, A. C., et al. Ionic components of electric current at rat corneal wounds. PloS one. 6, e17411 (2011).
  24. Luxardi, G., Reid, B., Maillard, P., Zhao, M. Single cell wound generates electric current circuit and cell membrane potential variations that requires calcium influx. Integrative biology : quantitative biosciences from nano to macro. 6, 662-672 (2014).
  25. Smith, P. J. S., Sanger, R. H., Messerli, M. A., Michael, A. C., Borland, L. H. . Electrochemical Methods for Neuroscience. , (2007).
  26. Smith, P. J., Hammar, K., Porterfield, D. M., Sanger, R. H., Trimarchi, J. R. Self-referencing, non-invasive, ion selective electrode for single cell detection of trans-plasma membrane calcium flux. Microscopy research and technique. 46, 398-417 (1999).
  27. Messerli, M. A., Smith, P. J. Construction theory, and practical considerations for using self-referencing of Ca(2+)-selective microelectrodes for monitoring extracellular Ca(2+) gradients. Methods in cell biology. 99, 91-111 (2010).
  28. Chambers, J., Hastie, T., Pregibon, D., Momirović, K., Mildner, V. Ch. 48. Compstat. , 317-321 (1990).
  29. Chambers, J. M., Cleveland, W. S., Kleiner, B., Tukey, P. A. . Graphical methods for data analysis. , (1983).
  30. Burkel, B. M., Benink, H. A., Vaughan, E. M., von Dassow, G., Bement, W. M. A Rho GTPase signal treadmill backs a contractile array. Developmental cell. 23, 384-396 (2012).
  31. Bement, W. M., Mandato, C. A., Kirsch, M. N. Wound-induced assembly and closure of an actomyosin purse string in Xenopus oocytes. Current biology : CB. 9, 579-587 (1999).
  32. Mandato, C. A., Bement, W. M. Contraction and polymerization cooperate to assemble and close actomyosin rings around Xenopus oocyte wounds. The Journal of cell biology. 154, 785-797 (2001).
  33. Benink, H. A., Bement, W. M. Concentric zones of active RhoA and Cdc42 around single cell wounds. The Journal of cell biology. 168, 429-439 (2005).
  34. Simon, C. M., Vaughan, E. M., Bement, W. M., Edelstein-Keshet, L. Pattern formation of Rho GTPases in single cell wound healing. Molecular biology of the cell. 24, 421-432 (2013).
  35. Petersen, C. C., Dupont, G. The initiation of a calcium signal in Xenopus oocytes. Cell calcium. 16, 391-403 (1994).
  36. Horisberger, J. D., Lemas, V., Kraehenbuhl, J. P., Rossier, B. C. Structure-function relationship of Na,K-ATPase. Annual review of physiology. 53, 565-584 (1991).
  37. Miledi, R. A calcium-dependent transient outward current in Xenopus laevis oocytes. Proceedings of the Royal Society of London. Series B, Containing papers of a Biological character. Royal Society. , 491-497 (1982).
  38. Miledi, R., Parker, I. Chloride current induced by injection of calcium into Xenopus oocytes. The Journal of physiology. 357, 173-183 (1984).
  39. Parker, I., Miledi, R. A calcium-independent chloride current activated by hyperpolarization in Xenopus oocytes. Proceedings of the Royal Society of London. Series B, Containing papers of a Biological character. Royal Society. 233, 191-199 (1988).
  40. Costa, P. F., Emilio, M. G., Fernandes, P. L., Ferreira, H. G., Ferreira, K. G. Determination of ionic permeability coefficients of the plasma membrane of Xenopus laevis oocytes under voltage clamp. The Journal of physiology. 413, 199-211 (1989).
  41. Adams, D. S., Levin, M. General principles for measuring resting membrane potential and ion concentration using fluorescent bioelectricity reporters. Cold Spring Harbor protocols. 2012, 385-397 (2012).
  42. Porterfield, D. M. Measuring metabolism and biophysical flux in the tissue, cellular and sub-cellular domains: recent developments in self-referencing amperometry for physiological sensing. Biosensors. 22, 1186-1196 (2007).
  43. McLamore, E. S., et al. A self-referencing glutamate biosensor for measuring real time neuronal glutamate flux. Journal of neuroscience methods. 189, 14-22 (2010).
  44. Yin, M., et al. Highly sensitive and fast responsive fiber-optic modal interferometric pH sensor based on polyelectrolyte complex and polyelectrolyte self-assembled nanocoating. Analytical and bioanalytical chemistry. 399, 3623-3631 (2011).
  45. Chatni, M. R., Porterfield, D. M. Self-referencing optrode technology for non-invasive real-time measurement of biophysical flux and physiological sensing. The Analyst. 134, 2224-2232 (2009).
  46. McLamore, E. S., Jaroch, D., Chatni, M. R., Porterfield, D. M. Self-referencing optrodes for measuring spatially resolved, real-time metabolic oxygen flux in plant systems. Planta. 232, 1087-1099 (2010).
  47. McLamore, E. S., et al. A self referencing platinum nanoparticle decorated enzyme-based microbiosensor for real time measurement of physiological glucose transport. Biosensors & bioelectronics. 26, 2237-2245 (2011).
check_url/fr/52782?article_type=t

Play Video

Citer Cet Article
Luxardi, G., Reid, B., Ferreira, F., Maillard, P., Zhao, M. Measurement of Extracellular Ion Fluxes Using the Ion-selective Self-referencing Microelectrode Technique. J. Vis. Exp. (99), e52782, doi:10.3791/52782 (2015).

View Video