Summary

追踪药物诱导Colocalizational变化分析受体后内部贩运

Published: July 03, 2015
doi:

Summary

受体运输调节信号传导和细胞反应的配体和是,本身,响应于细胞的条件,包括配体诱导的信号传导。在这里,我们描述了一个强大而灵活的技术评估定量使用免疫标记和colocalizational分析药物诱导的受体贩卖。

Abstract

The intracellular trafficking of receptors is a collection of complex and highly controlled processes. Receptor trafficking modulates signaling and overall cell responsiveness to ligands and is, itself, influenced by intra- and extracellular conditions, including ligand-induced signaling. Optimized for use with monolayer-plated cultured cells, but extendable to free-floating tissue slices, this protocol uses immunolabelling and colocalizational analysis to track changes in intracellular receptor trafficking following both chronic/prolonged and acute interventions, including exogenous drug treatment. After drug treatment, cells are double-immunolabelled for the receptor and for markers for the intracellular compartments of interest. Sequential confocal microscopy is then used to capture two-channel photomicrographs of individual cells, which are subjected to computerized colocalizational analysis to yield quantitative colocalization scores. These scores are normalized to permit pooling of independent replicates prior to statistical analysis. Representative photomicrographs may also be processed to generate illustrative figures. Here, we describe a powerful and flexible technique for quantitatively assessing induced receptor trafficking.

Introduction

受体,尤其是G蛋白偶联受体(GPCR),例行贩卖细胞内,并从细胞表面1。这些复杂地策划和严格控制的流程决定细胞的受体提供补充和调节受体活性的时间,脱敏和复敏2 – 4。重要的是,这些方法是响应于蜂窝环境中,包括药物诱导的受体活性或不活动。也就是说,配体在受体的行动可以改变这些受体的细胞内转运,从而改变细胞的反应。以这种方式,外部的配体在细胞功能的更多的效果发挥的是,甚至超出古典信使到效应器级联5,6。

审视这种变化引起的受体运输是困难的。所有可用的技术包括限制。生物素保护测定法已被用于MONI器表面受体的人群。这些受体的生物素化和免疫沉淀的时间过程被执行以量化在一段时间内的生物素化的受体的减少。这种技术基本上是监视一个初始的,标记的人口受体7的逐渐退化,并且是在构建这个过程的时间进程非常有用的。不幸的是,该测定是无法监测任何比受体如内化,回收或新受体的原始池的劣化等过程。此外,除了在150kDa范围在的50kDa范围内的受体的抗体的可改变该受体的贩卖8,9,并且该技术可能难以与低表达级别受体使用。

其他程序使用各种方法来确定细胞内运输隔室( 例如,内体等),并且评估其共定位与感兴趣的受体。这包括了我们Ë异源表达系统的荧光蛋白标记的受体和隔间的标记( RAB-GTP酶家族)的嵌合结构。这潜在地允许使用活细胞成像,去除与固定和透化的问题。虽然功能强大,这样的策略,从异源系统中一般的相同的限制患有:标记和表达水平的影响对贩卖行为和不兼容的多种生理代表性的细胞类型。更普遍,染料用于轻松标记细胞内间隔( 溶酶体,表面上)10。染料,但是,可以缺乏特异性(染料溶酶体的情况下,所有的酸性细胞器),不要通过其他车厢评估贩卖。尽管如此,这些技术允许相当大的控制系统和实验条件,并且可以从这里提出,下面的共定位的分析方法中受益。

该方法W¯¯E存在这里由共存提炼受体贩卖的跟踪。使用免疫细胞化学(ICC)来标记适当的标记,可以识别多个不同的细胞内隔室中。这也允许在代替异源系统的使用生理学上相关的原代细胞培养的。这ICC协议涉及到固定之前标记感兴趣的细胞;这允许标签在下列药物治疗(多个)特定时间点。这将产生全球性受体室协会“快照”在那个时间点。随着多个时间点,贩运变化也时间过程可以构造。

简言之,将细胞是药物处理,标记对受体和感兴趣胞内区室,共焦成像,并且显微照片进行分析,以数学量化受体和隔室11的共定位。在我们的使用中,我们研究了与镭受体的共定位B5,Rab11,和溶酶体相关膜蛋白1(LAMP1)。这些标记识别早期内涵体,回收内涵体,和溶酶体,分别。这些措施共存作为代理人的内化,再利用和降解12的总体进程。

如同所有的技术,一些限制应该被考虑。由于需要将图像的每一个个体的神经元分析,该技术会变得非常劳动密集取决于所涉及的条件和时间点的数量。所有免疫标记也必须与所造成的固定和通透13细胞超微结构,蛋白定位和表位的辅助作用。

虽然用于与初级感觉神经元的原代培养用原本优化,这种方法与其他单层镀培养模型广泛兼容。

使用数学量化测量电Ë共定位是,值得注意的是,更严格的方法上比用来评估受体转运的变化,这往往依赖于模糊的,主观的措施,如视觉检查,多渠道覆盖14以前的技 ​​术。

这种技术对于其与体内干预(前原代培养物代)广泛的兼容性特别有用的, 在体外的干预(培养物生长期间),以及各种标记的目标15。因此,它可以适合于许多不同的研究问题。

Protocol

注:此协议是与各种单层镀细胞/组织培养模型,药物治疗方案,并标注大致目标兼容。因此,在实际使用中,许多具体的参数将根据实验设计而有所不同。这里,引用这些用户定义的参数都是通用的。实施例的条件下,作为用于获得代表性的结果,被包括在斜体。 1.解决方案制备洗涤缓冲液通过混合0.1M Tris缓冲高渗(300毫摩尔)盐水和0.05%的吐温20; pH为7.4,在室温?…

Representative Results

使用这种技术,有可能对量化以下二者慢性/长期和急性药物治疗在受体后的内化贩卖的变化。后的药物治疗,固定,和标签,高分辨率双通道显微照片被捕获的每个感兴趣细胞。代表图像可与假色共定位组合以生成所说明的图( 图1)。随后colocalizational分析,如上所述,得到目标靶共定位( 例如,受体隔室标志物)的定量分数。这些数据然后可用于比较的变化,在这种情况下…

Discussion

我们已经优化了这个协议,成人背根神经节神经元(初级感觉神经元)的原代培养的分析。它也可以使用,很少或根本没有修改,为单层镀培养细胞广泛。该colocalizational分析也有可能在组织切片和其他此类制剂11,但药物治疗和组织固定/制备组分是不恰当的。

有趣的是,这里介绍的IC卡的方法也可以使用,以适当的固定和组织准备,以便在组织切片进行双标记免疫组…

Divulgations

The authors have nothing to disclose.

Acknowledgements

这项工作是由CIHR(MOP394808)和加拿大研究主席CMCEWO资助项目是由NSERC的研究生奖学金的获得者。

Materials

Trizma Base Sigma Aldrich T1503-500G
Sodium Chloride Sigma Aldrich S9888-500G
Tween 20 Fisher Scientific BP337-500
Hydrochloric Acid Sigma Aldrich 258148
Albumin from Bovine Serum Sigma Aldrich A7906-100G
Gelatin from cold water fish skin Sigma Aldrich G7041-100G
Corning Costar Cell Culture Plates: 24-well Fisher Scientific 720084
12 circle Microscope Cover Glass Fisher Scientific 1254580
Aqua/Poly-Mount Polysciences 18606-20
Sodium Phosphate Monobasic Sigma Aldrich S9638-500G
Sodium Phosphate Dibasic Sigma Aldrich S9763-500G
Paraformaldehyde Polysciences 00380-1
Dumont #5 Forceps – Standard/Dumoxel Fine Science Tools 11251-30
Rabbit anti-DOR antibody MyBioSource MBS316175 Used at 1:1500
Mouse anti-Rab5 antibody Sigma Aldrich R7904 Used at 1:750
Mouse anti-Rab11 antibody Millipore 05-853 Used at 1:500
Goat anti-LAMP1 antibody Santa Cruz SC8098 Used at 1:750
Donkey anti-rabbit Alexa 488 conjugated antibody Life Technologies A-21206 Used at 1:200 to 1:2000
Goat anti-mouse Alexa 594 conjugated antibody Life Technologies A-11005 Used at 1:200 to 1:2000
Donkey anti-goat Alexa 594 conjugated antibody Life Technologies A-11058 Used at 1:200 to 1:2000

References

  1. Drake, M. T., Shenoy, S. K., Lefkowitz, R. J. Trafficking of G protein-coupled receptors. Circ. Res. 99 (6), 570-582 (2006).
  2. Hanyaloglu, A. C., von Zastrow, M. Regulation of GPCRs by endocytic membrane trafficking and its potential implications. Annu. Rev. Pharmacol. Toxicol. 48, 537-568 (2008).
  3. Hislop, J. N., von Zastrow, M. Role of ubiquitination in endocytic trafficking of G-protein-coupled receptors. Traffic. 12 (2), 137-148 (2011).
  4. Nagi, K., Piñeyro, G. Regulation of opioid receptor signalling: implications for the development of analgesic tolerance. Mol. Brain. 4 (1), 25 (2011).
  5. Whistler, J. L., Enquist, J., et al. Modulation of postendocytic sorting of G protein-coupled receptors. Science. 297 (5581), 615-620 (2002).
  6. Von Zastrow, M. Regulation of opioid receptors by endocytic membrane traffic: mechanisms and translational implications. Drug Alcohol Depend. 108 (3), 166-171 (2010).
  7. Milan-Lobo, L., Whistler, J. L. Heteromerization of the µ- and δ-opioid receptors produces ligand-biased antagonism and alters µ-receptor trafficking. J. Pharmacol. Exp. Ther. 337 (3), 868-875 (2011).
  8. Wang, H. -. B., Guan, J. -. S., Bao, L., Zhang, X. Distinct subcellular distribution of delta-opioid receptor fused with various tags in PC12 cells. Neurochem. Res. 33 (10), 2028-2034 (2008).
  9. Scherrer, G., Tryoen-Tóth, P., et al. Knockin mice expressing fluorescent delta-opioid receptors uncover G protein-coupled receptor dynamics in vivo. Proc. Natl. Acad. Sci. 103 (25), 9691-9696 (2006).
  10. He, S. -. Q., Zhang, Z. -. N., et al. Facilitation of µ-opioid receptor activity by preventing δ-opioid receptor-mediated codegradation. Neuron. 69 (1), 120-131 (2011).
  11. French, A. P., Mills, S., Swarup, R., Bennett, M. J., Pridmore, T. P. Colocalization of fluorescent markers in confocal microscope images of plant cells. Nat. Protoc. 3 (4), 619-628 (2008).
  12. Ong, E. W., Xue, L., Olmstead, M. C., Cahill, C. M. Prolonged morphine treatment alters δ opioid receptor post-internalization trafficking. Br. J. Pharmacol. 172 (2), 615-629 (2014).
  13. Schnell, U., Dijk, F., Sjollema, K. a. Immunolabeling artifacts and the need for live-cell imaging. Nature Methods. 9 (2), 152-158 (2012).
  14. Rozenfeld, R., Gupta, A., Devi, L. A. Cell surface targeting of mu-delta opioid receptor heterodimers by RTP4. Proc. Natl. Acad. Sci. 105 (41), 16045-16050 (2008).
  15. Gupta, A., Mulder, J., et al. Increased abundance of opioid receptor heteromers after chronic morphine administration. Sci. Signal. 3 (131), ra54 (2010).
  16. Seibenhener, M. L., Wooten, M. W. Isolation and culture of hippocampal neurons from prenatal mice. J. Vis. Exp. (65), 1-7 (2012).
  17. Bolte, S., Cordelières, F. P. A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 224 (Pt 3), 213-232 (2006).
  18. Field, A., Miles, J., Field, Z. . Discovering Statistics Using R. , (2012).
  19. Mattioli, T. -. A. M., Milne, B., Cahill, C. M. Ultra-low dose naltrexone attenuates chronic morphine-induced gliosis in rats. Mol. Pain. 6, 22 (2010).
  20. Vogt, R. F., Phillips, D. L., Henderson, L. O., Whitfield, W., Spierto, F. W. Quantitative differences among various proteins as blocking agents for ELISA microtiter plates. J. Immunol. Methods. 101 (1), 43-50 (1987).
  21. Johnson, I., Spence, M. . The Molecular Probes Handbook. , (2010).
  22. Morris, T. J., Stanley, E. F. A simple method for immunocytochemical staining with multiple rabbit polyclonal antibodies. J. Neurosci. Methods. 127 (2), 149-155 (2003).
  23. Pawley, J. . Handbook of Biological Confocal Microscopy. , (2006).
  24. North, A. J. Seeing is believing? A beginners’ guide to practical pitfalls in image acquisition. J. Cell Biol. 172 (1), 9-18 (2006).
  25. Zinchuk, V., Zinchuk, O., Okada, T. Quantitative colocalization analysis of multicolor confocal immunofluorescence microscopy images: pushing pixels to explore biological phenomena. Acta Histochem. Cytochem. 40 (4), 101-111 (2007).
check_url/fr/52824?article_type=t

Play Video

Citer Cet Article
Ong, E., Cahill, C. Tracking Drug-induced Changes in Receptor Post-internalization Trafficking by Colocalizational Analysis. J. Vis. Exp. (101), e52824, doi:10.3791/52824 (2015).

View Video