Summary

生物膜荧光探针力:受体 - 配体动力学并行和定量结合诱导细胞内信号作用于单细胞

Published: August 04, 2015
doi:

Summary

We describe a technique for concurrently measuring force-regulated single receptor-ligand binding kinetics and real-time imaging of calcium signaling in a single T lymphocyte.

Abstract

膜受体 – 配体相互作用介导许多细胞功能。结合动力学和由这些分子之间的相互作用引起的下游信号很可能受到机械环境中结合和信号发生。最近的一项研究表明,机械力可以调节抗原识别由与触发T细胞受体(TCR)的。这成为可能,我们开发了一种新技术,荧光地称为生物膜力探针(fBFP),它结合了单分子力谱荧光显微镜。使用超软人类红细胞作为敏感的力传感器,一个高速摄像机和实时成像跟踪技术,该fBFP是〜1 PN(10 -12 N)〜3纳米和〜0.5毫秒力,空间和时间分辨率。随着fBFP,可以精确地测量力下单调节受体 – 配体结合动力学,同时结合图像触发细胞内的CALcium信令在单个活细胞。这种新技术可以用来研究其他膜受体 – 配体相互作用和信号下机械调节的其它细胞。

Introduction

细胞-细胞和细胞-细胞外基质(ECM)的粘附是由细胞表面受体,细胞外基质蛋白和/或脂 ​​质1之间的结合介导的。结合允许细胞以形成功能结构1,以及认识,沟通,并做出反应的环境1-3。不像可溶性蛋白( 例如 ,细胞因子和生长因子)从一个三维(3D),其结合流体相到细胞表面受体,细胞粘附受体形成具有跨越窄交界间隙及其配体桥接两个相对的表面,限制分子键扩散在二维(2D)接口4-7。与此相反,以三维动力学是由传统的结合分析( 例如 ,表面等离子体共振或SPR)常用的测量,2D动力学已与诸如原子力显微镜(AFM)8-10专门技术来量化,流室11,12,微管13,14,光镊子15和生物膜力探针(BFP)16-21。

以上仅仅提供物理连锁蜂窝内聚力,粘附分子是信令机械为细胞与其周围环境进行通信的主要组成部分。出现了在理解越来越大的兴趣如何粘附分子的配体接合启动细胞内信号传导,以及如何在初始信号被转导的细胞内。直观地,受体 – 配体的性质的结合可影响它诱导的信号。然而,很难使用,因为它们的许多限制, 例如 ,一个差时间分辨率和完全缺乏空间分辨率的生物化学分析的传统合奏解剖外相互作用和细胞内信号事件之间的机械关系。现有的方法,使生物物理(2D受体 – 配体结合动力学)和生化(信令)观察活细胞包括可调刚性22的荧光能力24-26掺入底物,弹性体柱阵列23和流动室/微流体装置。然而,信令和受体 – 配体结合的读数必须(通过不同的方法最多)分别求出,从而难以解剖的粘结性能与信号事件的时间和空间关系。

传统的BFP是一个超灵敏光谱力高时空分辨率17。它使用一个挠性红细胞(RBC),为力传感器,可实现单分子2D动力学,机械性能和构象变化14,16,19-21,27-29的测量。荧光成像基于BFP(fBFP)相关与结合触发的细胞信号在单分子尺度的受体 – 配体的结合动力学。采用这种设置, 原位细胞信号活动表面mechani的上下文卡尔刺激中观察到的T细胞27。该fBFP是通用的,可以用于细胞粘附和信号传导由在其他小区的其他分子介导的研究。

Protocol

该协议遵循的指导方针,并已获得由佐治亚理工学院的人类研究伦理委员会。 1.人类红细胞分离,生物素和渗透压调节注:步骤1.1应该由受过训练的医疗专业人员如护士进行,与机构审查委员会批准的协议。 得到的血液8-10微升(一滴)从手指刺,并添加至1ml的碳酸盐/碳酸氢盐缓冲液( 表1和2)。轻轻涡旋或吸取的混合?…

Representative Results

的BFP技术是在1995年17率先由埃文斯实验室,这picoforce工具已被广泛用来测量固定化在表面上的蛋白质的相互作用,从而分析二维粘附分子动力学与它们的配体16,19,20相互作用, 30,测量分子的弹性21,29,并确定蛋白的构象变化21。对于fBFP,一组额外的与相应的软件系统( 表1)加落射荧光关联装置( 图1A – C)。 <p cla…

Discussion

一个成功的实验fBFP限嗣继承了一些关键的考虑因素。首先,对于力计算是可靠的,微量,红细胞,和探针珠应该对齐接近同轴越好。红细胞的吸移管内的投影应约一个探针移液器直径,使得红细胞和吸管之间的摩擦是微不足道的。对于一个典型的人RBC,最优吸管直径为2.0-2.4微米,这将产生等式1 17,30的最佳拟合。第二,以确保在力钳测定及热波动分析测量大多为单键,也可以保持在20%以…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Research related to this paper and the development of the fBFP technology in the Zhu lab were supported by NIH grants AI044902, AI077343, AI038282, HL093723, HL091020, GM096187, and TW008753. We thank Evan Evans for inventing this empowering experimental tool, and members of the Evans lab, Andrew Leung, Koji Kinoshita, Wesley Wong, and Ken Halvorsen, for helping us to build the BFP. We also thank other Zhu lab members, Fang Kong, Chenghao Ge and Kaitao Li, for their helps in the instrumentation development.

Materials

Table 1: Reagents/Equipment
Name of Material/ Equipment Company Catalog Number Comments/Description
Sodium Phosphate Monobasic Monohydrate (NaH2PO4•H2O) Sigma-Aldrich S9638 Phosphate buffer preparation
Anhy. Sodium Phosphate Dibasic (Na2HPO4) Sigma-Aldrich S7907 Phosphate buffer preparation
Sodium Carbonate (Na2CO3) Sigma-Aldrich S2127 Carbonate/bicarbonate buffer preparation
Sodium Bicarbonate (NaHCO3) Sigma-Aldrich S5761 Carbonate/bicarbonate buffer preparation
Sodium chloride (NaCl) Sigma-Aldrich S7653 N2-5% buffer preparation
Potassium chloride (KCl) Sigma-Aldrich P9541 N2-5% buffer preparation
Potassium phosphate monobasic (KH2PO4) Sigma-Aldrich P5655 N2-5% buffer preparation
Sucrose Sigma-Aldrich S0389 N2-5% buffer preparation
MAL-PEG3500-NHS JenKem A5002-1 Bead functionalization
Biotin-PEG3500-NHS JenKem A5026-1 RBC biotinylation
Nystatin Sigma-Aldrich N6261 RBC osmolarity adjustment
Ammonium Hydroxide (NH4OH) Sigma-Aldrich A-6899 Glass bead silanization
Methanol BDH 67-56-1 Glass bead silanization
30% Hydrogen Peroxide (H2O2) J. T. Barker Jan-86 Glass bead silanization
Acetic Acid (Glacial) Sigma-Aldrich ARK2183 Glass bead silanization
3-MERCAPTOPROPYLTRIMETHOXYSILANE(MPTMS) Uct Specialties, llc 4420-74-0 Glass bead functionalization
Borosilicate Glass beads Distrilab Particle Technology 9002 Glass bead functionalization
Streptavidin−Maleimide Sigma-Aldrich S9415 Glass bead functionalization
BSA Sigma-Aldrich A0336 Ligand functionalizing
Fura2-AM Life Technologies F-1201 Intracellular calcium fluorescence dye loading
Dimethyl sulfoxide (DMSO) Sigma-Aldrich D2650 Intracellular calcium fluorescence dye loading
Quantibrite PE Beads BD Biosciences 340495 Density quantification
Flow Cytometer BD Biosciences BD LSR II Density quantification
Capillary Tube 0.7-1.0mm x 30" Kimble Chase 46485-1 Micropipette making
Flaming/Brown Micropipette Puller sutter instrument P-97 Micropipette making
Pipette microforce Narishige MF-900 Micropipette making
Mineral Oil Fisher Scientific BP2629-1 Chamber assembly
Microscope Cover Glass Fisher Scientific 12-544-G Chamber assembly
Micro-injector World Precision Instruments MF34G-5 Chamber assembly
1ml Syringe BD  309602 Chamber assembly
Micropipette holder Narishige HI-7 Chamber assembly
Home-designed mechanical parts and adaptors fabrications using CNC machining.  Biophysics Instrument All parts are customized according to the CAD designs. BFP system
Microscope (TiE inverted) Nikon MEA53100 BFP system
Objective CFI Plan Fluor 40x (NA 0.75, WD 0.72mm, Spg) Nikon MRH00401 BFP system
Camera, GE680, 640×480, GigE, 1/3" CCD, mono Graftek Imaging 02-2020C BFP system
Prosilica GC1290 – ICX445, 1/3", C-Mount, 1280×960, Mono., CCD, 12 Bit ADC Graftek Imaging 02-2185A BFP system
Manual submicron probehead with high resolution remote control Karl Suss PH400 BFP system
Anti-vibration table (5’ x 3’) TMC 77049089 BFP system
3D manual translational stage Newport 462-XYZ-M
SolidWorks 3D CAD software SOLIDWORKS Corp. Version 2012 SP5 BFP system
LabVIEW software National Instruments Version 2009 BFP system, BFP program
3D piezo translational stage Physik Instrumente M-105.3P BFP system
Linear piezo accuator Physik Instrumente P-753.1CD BFP system
Micromanager software Version 1.4 fBFP system, fluorescence imaging program
Dual Cam (DC-2) Photometrics 77054724 fBFP system
Dual Cam emission filter (T565LPXR) Photometrics 77054725 fBFP system
Fluorescence Camera Hamamatsu ORCA-R2 C10600-10B fBFP system
Plastic paraffin film (Parafilm) Bemis Company, Inc PM996 bottle sealing
Table 2: Buffer solutions
Carbonate/bicarbonate buffer (pH 8.5)
Sodium Carbonate (Na2CO3) 8.4g/L
Sodium Bicarbonate (NaHCO3) 10.6g/L
Phosphate buffer (pH 6.5-6.8)
NaPhosphate monobasic   NaH2PO4•H2O 27.6g/L
Anhy. NaPhosphate dibasic   Na2HPO4 28.4g/L
N2-5% buffer (pH 7.2)
Potassium chloride (KCl) 20.77g/L
Sodium chloride (NaCl) 2.38g/L
Potassium phosphate monobasic (KH2PO4) 0.13g/L
Anhy. Sodium Phosphate Dibasic (Na2HPO4) 0.71g/L
Sucrose 9.70g/L

References

  1. Aplin, A. E., Howe, A., Alahari, S. K., Juliano, R. L. Signal transduction and signal modulation by cell adhesion receptors: the role of integrins, cadherins, immunoglobulin-cell adhesion molecules, and selectins. Pharmacological reviews. 50, 197-263 (1998).
  2. Davis, M. M., Bjorkman, P. J. T-cell antigen receptor genes and T-cell recognition. Nature. 334, 395-402 (1988).
  3. Dado, D., Sagi, M., Levenberg, S., Zemel, A. Mechanical control of stem cell differentiation. Regenerative medicine. 7, 101-116 (2012).
  4. Edwards, L. J., Zarnitsyna, V. I., Hood, J. D., Evavold, B. D., Zhu, C. Insights into T cell recognition of antigen: significance of two-dimensional kinetic parameters. Frontiers in immunology. 3, 86 (2012).
  5. Zhu, C., Jiang, N., Huang, J., Zarnitsyna, V. I., Evavold, B. D. Insights from in situ analysis of TCR-pMHC recognition: response of an interaction network. Immunological reviews. 251, 49-64 (2013).
  6. Huang, J., Meyer, C., Zhu, C. T. T cell antigen recognition at the cell membrane. Molecular immunology. 52, 155-164 (2012).
  7. Zarnitsyna, V., Zhu, C. T. T cell triggering: insights from 2D kinetics analysis of molecular interactions. Physical biology. 9, 045005 (2012).
  8. Binnig, G., Quate, C. F., Gerber, C. Atomic Force Microscope. Physical Review Letters. 56, 930-933 (1986).
  9. Marshall, B. T., et al. Direct observation of catch bonds involving cell-adhesion molecules. Nature. 423, 190-193 (2003).
  10. Kong, F., Garcia, A. J., Mould, A. P., Humphries, M. J., Zhu, C. Demonstration of catch bonds between an integrin and its ligand. The Journal of cell biology. 185, 1275-1284 (2009).
  11. Yago, T., et al. Catch bonds govern adhesion through L-selectin at threshold shear. The Journal of cell biology. 166, 913-923 (2004).
  12. Yago, T., et al. Platelet glycoprotein Ibalpha forms catch bonds with human WT vWF but not with type 2B von Willebrand disease vWF. The Journal of clinical investigation. 118, 3195-3207 (2008).
  13. Chesla, S. E., Selvaraj, P., Zhu, C. Measuring two-dimensional receptor-ligand binding kinetics by micropipette. Biophysical journal. 75, 1553-1572 (1998).
  14. Huang, J., et al. The kinetics of two-dimensional TCR and pMHC interactions determine T-cell responsiveness. Nature. 464, 932-936 (2010).
  15. Heinrich, V., Wong, W. P., Halvorsen, K., Evans, E. Imaging biomolecular interactions by fast three-dimensional tracking of laser-confined carrier particles. Langmuir : the ACS journal of surfaces and colloids. 24, 1194-1203 (2008).
  16. Chen, W., Evans, E. A., McEver, R. P., Zhu, C. Monitoring receptor-ligand interactions between surfaces by thermal fluctuations. Biophysical journal. 94, 694-701 (2008).
  17. Evans, E., Ritchie, K., Merkel, R. Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces. Biophysical. 68, 2580-2587 (1995).
  18. Evans, E., Leung, A., Heinrich, V., Zhu, C. Mechanical switching and coupling between two dissociation pathways in a P-selectin adhesion bond. Proceedings of the National Academy of Sciences of the United States of America. 101, 11281-11286 (2004).
  19. Ju, L., Dong, J. -. f., Cruz, M. A., Zhu, C. The N-terminal Flanking Region of the A1 Domain Regulates the Force-dependent Binding of von Willebrand Factor to Platelet Glycoprotein Ib. Journal of Biological Chemistry. 288, (2013).
  20. Chen, W., Lou, J., Zhu, C. Forcing switch from short- to intermediate- and long-lived states of the alphaA domain generates LFA-1/ICAM-1 catch bonds. The Journal of biological chemistry. 285, 35967-35978 (2010).
  21. Chen, W., Lou, J., Evans, E. A., Zhu, C. Observing force-regulated conformational changes and ligand dissociation from a single integrin on cells. The Journal of cell biology. 199, 497-512 (2012).
  22. Judokusumo, E., Tabdanov, E., Kumari, S., Dustin, M. L., Kam, L. C. Mechanosensing in T lymphocyte activation. Biophysical journal. 102, L5-L7 (2012).
  23. Bashour, K. T., et al. CD28 and CD3 have complementary roles in T-cell traction forces. Proceedings of the National Academy of Sciences of the United States of America. 111, 2241-2246 (2014).
  24. Nesbitt, W. S., et al. Distinct glycoprotein Ib/V/IX and integrin alpha IIbbeta 3-dependent calcium signals cooperatively regulate platelet adhesion under flow. The Journal of biological chemistry. 277, 2965-2972 (2002).
  25. Mazzucato, M., Pradella, P., Cozzi, M. R., De Marco, L., Ruggeri, Z. M. Sequential cytoplasmic calcium signals in a 2-stage platelet activation process induced by the glycoprotein Ibalpha mechanoreceptor. Blood. 100, 2793-2800 (2002).
  26. Lefort, C. T., Ley, K. Neutrophil arrest by LFA-1 activation. Frontiers in immunology. 3, 157 (2012).
  27. Liu, B., Chen, W., Evavold, B. D., Zhu, C. Accumulation of dynamic catch bonds between TCR and agonist peptide-MHC triggers T cell signaling. Cell. 157, 357-368 (2014).
  28. Lou, J., et al. Flow-enhanced adhesion regulated by a selectin interdomain hinge. The Journal of cell biology. 174, 1107-1117 (2006).
  29. Fiore, V. F., Ju, L., Chen, Y., Zhu, C., Barker, T. H. Dynamic catch of a Thy-1-alpha5beta1+syndecan-4 trimolecular complex. Nature communications. 5, 4886 (2014).
  30. Chen, W., Zarnitsyna, V. I., Sarangapani, K. K., Huang, J., Zhu, C. Measuring Receptor-Ligand Binding Kinetics on Cell Surfaces: From Adhesion Frequency to Thermal Fluctuation Methods. Cellular and molecular bioengineering. 1, 276-288 (2008).
  31. Marshall, B. T., Sarangapani, K. K., Lou, J., McEver, R. P., Zhu, C. Force history dependence of receptor-ligand dissociation. Biophysical. 88, 1458-1466 (2005).
  32. Xiang, X., et al. Structural basis and kinetics of force-induced conformational changes of an alphaA domain-containing integrin. PloS one. 6, e27946 (2011).
check_url/fr/52975?article_type=t

Play Video

Citer Cet Article
Chen, Y., Liu, B., Ju, L., Hong, J., Ji, Q., Chen, W., Zhu, C. Fluorescence Biomembrane Force Probe: Concurrent Quantitation of Receptor-ligand Kinetics and Binding-induced Intracellular Signaling on a Single Cell. J. Vis. Exp. (102), e52975, doi:10.3791/52975 (2015).

View Video