Summary

In vitro Modellering af Kræft Neural Invasion: Dorsal rodganglie Model

Published: April 12, 2016
doi:

Summary

This video article shows the use of the dorsal root ganglia (DRG)/cancer cell model in pancreatic ductal adenocarcinoma.

Abstract

One way that solid tumors disseminate is through neural invasion. This route is well-known in cancers of the head and neck, prostate, and pancreas. These neurotropic cancer cells have a unique ability to migrate unidirectionally along nerves towards the central nervous system (CNS). The dorsal root ganglia (DRG)/cancer cell model is a three dimensional (3D) in vitro model frequently used for studying the interaction between neural stroma and cancer cells. In this model, mouse or human cancer cell lines are grown in ECM adjacent to preparations of freshly dissociated cultured DRG. In this article, the DRG isolation protocol from mice, and implantation in petri dishes for co-culturing with pancreatic cancer cells are demonstrated. Five days after implantation, the cancer cells made contact with the DRG neurites. Later, these cells formed bridgeheads to facilitate more extensive polarized, neurotropic migration of cancer cells.

Introduction

Solide tumorer formidler på tre måder: direkte invasion, lymfe spredning, og hematogenic spredning. Men der er en fjerde middel til kræft spredes, der ofte bort, formidling langs nerverne. Kræft neural invasion (CNI) er en velkendt rute kræftspredning, især i cancere i hoved og hals, 1 prostata 2, 3 og bugspytkirtel. 4-8 CNI forekommer i mere end 80% af personer med pancreas adenocarcinom, der fører til retroperitoneal tumor spredes gennem cøliaki ganglion nerver. Disse neurotropisk cancerceller har en enestående evne til at migrere ensrettet langs nerver mod centralnervesystemet (CNS). 9. Dette fund tyder på, at perineurale mikromiljø kan udnyttes af cancerceller, hvilket giver faktorer, der understøtter malign vækst.

En af de få in vitro-modeller til CNI forskning er dorsalrodsganglier (DRG) / kræftcelle model. Denne model anvendes ofte til undersøgelse af parakrin interaktion mellem neurale stroma og cancerceller. 10-18 I denne model mus eller humane cancercellelinjer dyrkes i ekstracellulær matrix (ECM) i nærheden præparater af frisk dissocierede dyrket DRG.

Denne video artikel viser anvendelsen af ​​in vitro CNI i pancreas duktalt adenokarcinom.

Protocol

Fire til seks uger gammel kvinde C57BL / CJ-mus (Harlan, Jerusalem, Israel) blev anvendt i forsøget ifølge Sammenslutningen for Vurdering og akkreditering af Laboratory Animal Care specifikationer. Alle eksperimentelle procedurer blev udført i overensstemmelse med Institutional Animal Care og brug Udvalg og Institut for Landbrug regler. 1. Høst Rygmarven Aflive musen under anvendelse af en CO 2 kammer. Undgå cervikal dislokation, da det kan forårsage skade på gan…

Representative Results

Brug video mikroskopi billedbehandling, kan DRG ses spiring neuritter 5-7 dage efter implantation, mens kræftcellerne migrere væk fra deres kolonier mod DRG. Ved den 7. dag efter implantationen, cancercellerne kommer i kontakt med neuritter (figur 2). Fremad migration indeks over bugspytkirtelkræftceller anvendes i protokollen er 3-4 gange højere end for andre cellelinjer (QLL2, B16F) <str…

Discussion

Denne artikel præsenterer en in vitro model, der rekapitulerer kræft mikromiljø i det neurale niche, DRG-modellen. Videoen viser alle trin fra at anerkende anatomiske landmærker såsom DRG i musen, dens udvinding, og endelig dens dyrkning i ECM. Co-dyrkning DRG sammen med kræftceller præsenteres også. Der er ingen andre modeller for in vitro perineural invasion forskning beskrevet i litteraturen gør denne model essentiel for at studere den perineurale niche microenvironment in vitro. <…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Edith Suss-Toby is thanked for her assistance in the time-lapse microscopy and image analysis. Nofar Rada is thanked for the artistic work.

Materials

Equipments:
Operating microscope Leica M205
Tiime Lapse System Zeiss
Forceps Sigma-Aldrich F4142 
Surgical blade Sigma-Aldrich Z309036
Scissors Sigma-Aldrich S3271
35mm petri dishes, glass bottom de groot 60-627860
Name Company  Catalog Number Comments
Materials:
70% ethanol sigma
Cold PBS Biological industries 02-023-1A
DMEM Biological industries 01-055-1A
FCS Rhenium 10108165
Penicillin and streptomycin Biological industries 01-031-1B
Sodium Pyruvate Biological industries 03-042-1B
L-Glutamine Biological industries 03-020-1B
Growth factor depleted matrigel Trevigen 3433-005-01

References

  1. Carter, R. L., Foster, C. S., Dinsdale, E. A., Pittam, M. R. Perineural spread by squamous carcinomas of the head and neck, a morphological study using antiaxonal and antimyelin monoclonal antibodies. J Clin Pathol. 36, 269-275 (1983).
  2. Beard, C. J., et al. Perineural invasion is associated with increased relapse after external beam radiotherapy for men with low-risk prostate cancer and may be a marker for occult, high-grade cancer. Int J Radiat Oncol Biol Phys. 58, 19-24 (2004).
  3. Maru, N., Ohori, M., Kattan, M. W., Scardino, P. T., Wheeler, T. M. Prognostic significance of the diameter of perineural invasion in radical prostatectomy specimens. Hum Pathol. 32, 828-833 (2001).
  4. Ceyhan, G. O., et al. Pancreatic neuropathy and neuropathic pain–a comprehensive pathomorphological study of 546 cases. Gastroenterology. 136, 177-186 (2009).
  5. Ceyhan, G. O., et al. The neurotrophic factor artemin promotes pancreatic cancer invasion. Ann Surg. 244, 274-281 (2006).
  6. Takahashi, T., et al. Perineural invasion by ductal adenocarcinoma of the pancreas. J Surg Oncol. 65, 164-170 (1997).
  7. Zhu, Z., et al. Nerve growth factor expression correlates with perineural invasion and pain in human pancreatic cancer. J Clin Oncol. 17, 2419-2428 (1999).
  8. Hirai, I., et al. Perineural invasion in pancreatic cancer. Pancreas. 24, 15-25 (2005).
  9. Mitchem, J. B., et al. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res. 73, 1128-1141 (2013).
  10. Kelly, K., et al. Attenuated multimutated herpes simplex virus-1 effectively treats prostate carcinomas with neural invasion while preserving nerve function. FASEB J. 22, 1839-1848 (2008).
  11. Dai, H., et al. Enhanced survival in perineural invasion of pancreatic cancer, an in vitro approach. Hum Pathol. 38, 299-307 (2007).
  12. Ayala, G. E., et al. Cancer-related axonogenesis and neurogenesis in prostate cancer. Clin Cancer Res. 14, 7593-7603 (2008).
  13. Ayala, G. E., et al. Stromal antiapoptotic paracrine loop in perineural invasion of prostatic carcinoma. Cancer Res. 66, 5159-5164 (2006).
  14. Ceyhan, G. O., et al. Neural invasion in pancreatic cancer, a mutual tropism between neurons and cancer cells. Biochem Biophys Res Commun. 374, 442-447 (2008).
  15. Bapat, A. A., Hostetter, G., Von Hoff, D. D., Han, H. Perineural invasion and associated pain in pancreatic cancer. Nat Rev Cancer. 11, 695-707 (2011).
  16. Ketterer, K., et al. Reverse transcription-PCR analysis of laser-captured cells points to potential paracrine and autocrine actions of neurotrophins in pancreatic cancer. Clin Cancer Res. 9, 5127-5136 (2003).
  17. Gil, Z., et al. Nerve-sparing therapy with oncolytic herpes virus for cancers with neural invasion. Clin Cancer Res. 13, 6479-6485 (2007).
  18. Gil, Z., et al. Paracrine regulation of pancreatic cancer cell invasion by peripheral nerves. J Natl Cancer Inst. 102, 107-118 (2010).
  19. Weizman, N., et al. Macrophages mediate gemcitabine resistance of pancreatic adenocarcinoma by upregulating cytidinedeaminase. Oncogene. 33, 3812-3819 (2014).
check_url/fr/52990?article_type=t

Play Video

Citer Cet Article
Na’ara, S., Gil, Z., Amit, M. In Vitro Modeling of Cancerous Neural Invasion: The Dorsal Root Ganglion Model. J. Vis. Exp. (110), e52990, doi:10.3791/52990 (2016).

View Video