Summary

光动力疗法与混合导电高分子/富勒烯纳米颗粒光敏剂

Published: October 28, 2015
doi:

Summary

This protocol describes a method for the fabrication of conducting polymer nanoparticles blended with fullerene. These nanoparticles were investigated for their potential use as a next generation photosensitizers for Photodynamic Therapy (PDT).

Abstract

In this article a method for the fabrication and reproducible in-vitro evaluation of conducting polymer nanoparticles blended with fullerene as the next generation photosensitizers for Photodynamic Therapy (PDT) is reported. The nanoparticles are formed by hydrophobic interaction of the semiconducting polymer MEH-PPV (poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]) with the fullerene PCBM (phenyl-C61-butyric acid methyl ester) in the presence of a non-compatible solvent. MEH-PPV has a high extinction coefficient that leads to high rates of triplet formation, and efficient charge and energy transfer to the fullerene PCBM. The latter processes enhance the efficiency of the PDT system through fullerene assisted triplet and radical formation, and ultrafast deactivation of MEH-PPV excited stated. The results reported here show that this nanoparticle PDT sensitizing system is highly effective and shows unexpected specificity to cancer cell lines.

Introduction

在光动力疗法(PDT)光敏剂施用给靶组织,并在接触光光敏剂产生活性氧(ROS)。活性氧物种如单线态氧和超氧化物可以诱导氧化应激和细胞和组织1-4后续结构损坏。因为它易于应用的这种方法已被积极地研究和临床试验已经发生5,6-。然而,显著的问题,如敏化剂的暗毒性,患者感光度(由于敏化剂的非选择性分布),以及疏水性的敏化剂(其导致生物利用度降低和潜在的急性毒性)保持。

这里,我们报告了一种用于制造体外进行配合富勒烯作为下一代光敏剂用于光动力聚合物纳米颗粒的评价。纳米颗粒通过自聚集形成所述高分子半导体MEH-PPV(聚[2-甲氧基-5-(2-乙基己氧基)-1,4-亚苯基亚乙烯基])与富勒烯PCBM(苯基-C 61 -丁酸甲酯)当溶解在相容的这些材料溶剂迅速注入到非相容的溶剂图1A)。 MEH-PPV作为宿主聚合物的选择是由它的高消光系数,导致的激发三重态的形成率高激励,既高效又超快电荷和能量转移到富勒烯PCBM 7。这些特性非常适合单线态氧和超氧形成PDT的致敏。

富勒烯事实上已经在PDT中被应用在两个分子和纳米颗粒形式8-13。然而,严重的毒性阻碍了进一步的发展12。在这里,我们表明,在MEH-PPV的基质包封富勒烯,得到复合MEH-PPV / PCBM的纳米颗粒的结果在一个PDT敏化材料,我不是本质的细胞毒性,表明向癌细胞由于纳米颗粒尺寸和表面电荷,和产量高效PDT治疗在低光剂量的特异性由于上述光物理特性。

Protocol

1.培养细胞系解冻的TE 71(小鼠胸腺上皮细胞),MDA-MB-231(人乳腺癌细胞),A549(人肺癌细胞)和OVCAR3(人类卵巢癌细胞)由保持在温水中冷冻剂瓶为小于2分钟。添加补充有10%FBS的每个细胞系,离心6分钟,在106×g下10 ml的DMEM培养基。 吸出悬挂和3毫升媒体添加到沉淀。适当吹打几次的细胞混合。加该细胞溶液到预先温热7 ml,在T75烧瓶补充有10%FBS的DMEM培养基,并保持在95%空气/ …

Representative Results

吸收和纳米粒子的固有细胞毒性的50重量%的共混MEH-PPV / PCBM的纳米颗粒孵育用TE 71,MDA-MB-231,A549和OVCAR3细胞系。的PCBM共混水平被选为50重量%PCBM,这已被证明是提供共轭聚合物和富勒烯14之间理想电荷和能量转移性能。纳米颗粒摄取的荧光图像示于图1B。细胞孵育24小时,用纳米粒子,以确保纳米颗粒摄取。然后将细胞用4%多聚甲醛在成像之前,以及为?…

Discussion

为了实现纳米粒子吸收,有必要保持一定的临界措施而制造该纳米颗粒。甲10 -6 M的 MEH-PPV溶液(混合有50重量%PCBM)在THF准备注入DI水,因为据观察,这种溶液的浓度在确定纳米粒子的尺寸起重要作用而形成。浓度通过紫外可见光谱检查。需要注意的是在协议步骤2.1.3,有必要首先在服药前的UV-vis光谱,因为该溶液稀释最初制备的MEH-PPV溶液(未稀释MEH-PPV原液)具有吸光度大于1喷射的速度?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

The authors gratefully acknowledge the National Science Foundation (NSF) for financial support of this work through a CAREER award (CBET-0746210) and through award CBET-1159500. We would like to thank Dr. Turkson (Univ. of Hawaii Cancer Center) and Dr. Altomare (Univ. of Central Florida College of Medicine) for assistance with cell culture.

Materials

Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) Sigma Aidrich 536512-1G average Mn 150,000-250,000
[6,6]-Phenyl C61 butyric acid methyl ester (PCBM) Sigma Aidrich 684449-500MG > 99.5%
Tetrahydrofuran (THF) EMD TX0284-6 Drisolv
1 ml syringe National Scientific Company 37510-1 For filtration of MEH-PPV solution
Syringe filter VWR 28145-495 25 mm, 0.2 µm, PTFE
1 ml syringe Hamilton Company 81320 For injection of MEH-PPV solution into water to make nanoparticles
Dulbecco's Modification of Eagle's Medium/Ham's F-12 50/50 Mix (DMEM) Corning (VWR) 45000-350
Hank's Balanced Salt Solution without phenol red (HBSS) Quality Biological (VWR) 10128-740
Dulbecco's Phosphate-Buffered Saline, 1X without calcium and magnesium (DPBS) Corning (VWR) 45000-436
Fetal Bovine Serum, Regular (Heat Inactivated) (FBS) Corning (VWR) 45000-736
Trypsin EDTA 1X 0.25% Corning (VWR) 45000-664 Trypsin/2.21 mM EDTA in HBSS without sodium bicarbonate, calcium and magnesium Porcine Parvovirus Tested
16% Paraformaldehyde Electron Microscopy Sciences  15710 16% paraformaldehyde is diluted to 4% by adding PBS
DAPI  Biotium VWR 89139-054 Nuclear stain
5 ml pipettes VWR 82050-478
75 cm2 culture flask VWR 82050-856 for culturing cells
96-well plates VWR 82050-771 for MTT assays
Tissue Culture Dishes with Vents Greiner Bio-One (VWR) 82050-538
Propidium iodide Molecular probes P3566
Annexin V FITC Invitrogen A13199 dye for apoptosis
Celltiter 96 non-R 1000 assays Promega (VWR) PAG4000 MTT
CellROX Green Reagent, for oxidative stress detection Invitrogen C10444 For ROS detection
UV-vis spectrometer Agilent 8453
Fluorescence spectrometer NanoLog HoribaJobin Yvon
Dynamic light scattering PD2000DLS, Precision detector
Incubator NuAir DH Autoflow
Confocal microscope Zeiss Axioskop2 63X oil immersion objective lens
Epiluminescence microscope Olympus IX71 60X water immersion objective lens, Andor Zyla sCMOS camera
Solar Simulator Newport 67005 Oriel Instruments
Reference solar cell Oriel  VLSI Standards Incorporated
Microplate reader BioTek Ex808
Hemocytometer Hausser Scientific Partnership 3200 For counting cells

References

  1. Dolmans, D., Fukumura, D., Jain, R. K. Photodynamic therapy for cancer. Nat Rev Cancer. 3 (5), 380-387 (2003).
  2. Dougherty, T. J., et al. Photodynamic therapy. J Natl Cancer Inst. 90 (12), 889-905 (1998).
  3. Ferrari, M. Cancer nanotechnology: Opportunities and challenges. Nat Rev Cancer. 5 (3), 161-171 (2005).
  4. Oleinick, N. L., Morris, R. L., Belichenko, T. The role of apoptosis in response to photodynamic therapy: what, where, why, and how. Photochem Photobiol Sci. 1 (1), 1-21 (2002).
  5. Ormond, A., Freeman, H. Dye Sensitizers for Photodynamic Therapy. Materials. 6 (3), 817-840 (2013).
  6. Pass, H. I. Photodynamic Therapy in Oncology – Mechanisms and Clinical Use. J Natl Cancer Inst. 85 (6), 443-456 (1993).
  7. Sariciftci, N. S., Smilowitz, L., Heeger, A. J., Wudl, F. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science. 258 (5087), 1474-1476 (1992).
  8. Sperandio, F. F., et al. Photoinduced electron-transfer mechanisms for radical-enhanced photodynamic therapy mediated by water-soluble decacationic C-70 and C84O2 Fullerene Derivatives. Nanomed-Nanotechnol. 9 (4), 570-579 (2013).
  9. Fan, J. Q., Fang, G., Zeng, F., Wang, X. D., Wu, S. Z. Water-Dispersible Fullerene Aggregates as a Targeted Anticancer Prodrug with both Chemo- and Photodynamic Therapeutic Actions. Small. 9 (4), 613-621 (2013).
  10. Grynyuk, I., et al. Photoexcited fullerene C-60 disturbs prooxidant-antioxidant balance in leukemic L1210 cells. Materialwiss Werkstofftech. 44 (2-3), 139-143 (2013).
  11. Liu, X. M., et al. Separately doped upconversion-C-60 nanoplatform for NIR imaging-guided photodynamic therapy of cancer cells. Chem Commun. 49 (31), 3224-3226 (2013).
  12. Trpkovic, A., Todorovic-Markovic, B., Trajkovic, V. Toxicity of pristine versus functionalized fullerenes: mechanisms of cell damage and the role of oxidative stress. Arch Toxicol. 86 (12), 1809-1827 (2012).
  13. Chen, Z. Y., MA, L. J., Liu, Y., Chen, C. Y. Applications of Functionalized Fullerenes in Tumor Theranostics. Theranostics. 2 (3), 238-250 (2012).
  14. Park, S. H., et al. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat Photonics. 3 (5), 297-302 (2009).
check_url/fr/53038?article_type=t

Play Video

Citer Cet Article
Doshi, M., Gesquiere, A. J. Photodynamic Therapy with Blended Conducting Polymer/Fullerene Nanoparticle Photosensitizers. J. Vis. Exp. (104), e53038, doi:10.3791/53038 (2015).

View Video