Summary

Ferromagnético Bare Metal Stent para captura de células endoteliais e Retenção

Published: September 18, 2015
doi:

Summary

Nossos objetivos foram para projetar, fabricar e testar stents ferromagnéticos para a captura de células endoteliais. Dez stents foram testados quanto à fractura e mais 10 stents foram testados para o magnetismo retida. Finalmente, 10 stents foram testados in vitro e 8 mais stents foram implantados em 4 porcos para mostrar a captura e retenção celular.

Abstract

Endotelização rápida de stents cardiovasculares é necessária para reduzir a trombose de stent e para evitar a terapia anti-plaquetas que podem reduzir o risco de sangramento. A viabilidade do uso de forças magnéticas para capturar e reter as células endoteliais excrescência (EdC) marcadas com nanopartículas de óxido de ferro super-paramagnéticas (spion) foi mostrado anteriormente. Mas esta técnica requer o desenvolvimento de um stent funcional mecanicamente a partir de um material magnético e biocompatível seguido de in-vitro e in-vivo de ensaio para comprovar rápida endotelização. Nós desenvolvemos um stent fracamente ferromagnéticos de aço inoxidável 2205 duplex utilizando desenho assistido por computador (CAD) e seu design foi aperfeiçoada por meio de análise de elementos finitos (FEA). O desenho final do stent exibiu a principal pressão abaixo do limite de fratura do material durante cravamento mecânica e expansão. Cem stents foram fabricados e um subconjunto deles foi usado para ensaios mecânicos, tempo de retained medições do campo magnético, em estudos in vitro de captura de células, in vivo e estudos de implantação. Dez stents foram testados para implantação para verificar se eles sustentado friso e expansão ciclo sem falhas. Outros 10 stents foram magnetizadas usando um ímã de neodímio forte e seu campo magnético retido foi medido. Os stents mostrou que o magnetismo retido foi suficiente para capturar spion marcado EOC nos nossos estudos in vitro. Foi verificada marcado com spion captura e retenção de EOC em grandes modelos animais através da implantação de um stent magnetizado e um stent controle não-magnetizado em cada um dos 4 porcos. As artérias stented foram explantadas após 7 dias e analisados ​​histologicamente. Os stents fracamente magnéticos desenvolvidas neste estudo foram capazes de atrair e reter as células endoteliais marcado com spion que podem promover a cura rápida.

Introduction

Patients implanted with vascular stents manufactured from thrombogenic materials like stainless steel, cobalt chromium, and platinum chromium – both bare metal stents (BMS) and drug eluting stents (DES) – need anti-platelet therapy to prevent thrombus formation. BMS heal rapidly, but are subject to late stage restenosis due to incomplete healing. DES require long term anti-platelet therapy due to delayed healing. Anti-platelet therapy administered to avoid thrombosis as a result of incomplete or delayed healing leads to increased bleeding risk and may not be suitable for certain patients1,2. An ideal stent will heal completely and quickly thus avoiding long-term anti-platelet therapy and late stage restenosis. This complete healing can only be achieved if the stent is rapidly coated with a monolayer of endothelial cells after implantation. Coating the stents with biocompatible materials such as gold or other biopolymers has been shown to improve thrombo-resistance, but none of these techniques achieved ideal blood compatibility as may be possible by coating with endothelial cells3,4.

A stent can be coated with endothelial cells post implantation by attracting circulating progenitor cells. This self-seeding technique can be achieved by utilizing ligands and antibodies. But this technique is limited by the low number of circulating endothelial progenitor cells. A promising strategy is to deliver cells directly to the stent immediately following implantation during a short period of blood flow occlusion3,5. This strategy requires a technique for rapidly capturing cells and retaining them on the stent even after restoring blood flow. We have developed a technique in which a magnetic stent is used to attract and retain magnetically-labeled endothelial cells delivered post implantation. To achieve this, a functional BMS with sufficient magnetic properties to capture and retain magnetically-labeled endothelial cells is required6.

In this paper, we discuss the methods for designing, manufacturing, and testing a 2205 stainless steel stent. The stents were designed using CAD and FEA. The manufactured stents were magnetized using a neodymium magnet and the retained magnetic field was measured using a magneto-resistance microsensor probe. We then tested the stents for magnetically-labeled cell capture in a culture dish during our in-vitro experiments. Finally, the stents were tested in-vivo by implanting magnetic and non-magnetic stents in 4 pigs and histologically analyzing the stented arteries.

Protocol

Todos os estudos com animais foram aprovados pelo Animal Care Institucional e Comitê de Utilização (IACUC) da Clínica Mayo. 1. Análise e Desenho de um 2205 de aço inoxidável Stent Projetando um nu metal stent usando CAD Faça um cilindro oco extrudido, selecionando em função 'de ressalto extrudado / base' com a espessura da parede igual à espessura haste do stent. Projetar um padrão de stent em um avião diferente esboço tangente ao cilindro …

Representative Results

Desenho de stent iterativo com base em FEA (Figura 1) revelou um stent que pode friso e expandir-se com uma entidade de deformação de 20%, o que é menos do que a estirpe final de 30%. Engaste e ensaio de expansão (Figura 2) não mostrou sinais de fractura. Fotos do stent deformado mostrou boa concordância com deformações FEA calculados e também imagens de microscopia mostrou nenhuma fratura (Figura 3). Como esperado a partir das medições do campo magnét…

Discussion

Desenvolvemos um stent magnético que pode funcionar como um stent convencional e pode atrair células endoteliais marcado com spion. Em estudos anteriores envolvendo stents magnéticas, os pesquisadores usaram níquel stents revestidos comerciais e bobinas ou malhas feitas de materiais magnéticos devido à indisponibilidade de um stent ferromagnético 5,10-14. Outros grupos também têm utilizado a natureza paramagnética de stents de aço inoxidável 304 de grau comercialmente disponíveis para o direciona…

Divulgations

The authors have nothing to disclose.

Acknowledgements

The authors thank Tyra Witt, Cheri Mueske, Brant Newman and Dr. Peter J. Psaltis, MBBS, PhD for their valuable contributions. This study was financially supported by European Regional Development Fund – FNUSA-ICRC (No. CZ.1.05/1.100/02.0123), American Heart Association Scientist Development Grant (AHA #06-35185N), National Institutes of Health (T32HL007111) and The Grainger Innovation Fund – Grainger Foundation.

Materials

2205 Stainless steel Carpenter Technology Corporation N/A Round bar stock material
Abaqus Dassault systems N/A Software
Atropine Prescription drug.
Clopidogrel Commercial name: Plavix. Prescription drug.
CM-DiI Life Technologies V-22888 Molecular Probes, Eugene, OR
Endothelial growth medium-2 Lonza CC-3162
Hand Held Crimping tool Blockwise engineering M1-RMC
Hydrochloric acid (HCl) Sigma Aldrich MFCD00011324 CAUTION: wear proptective equipment and handle under fume hood
Isoflurane anesthesia Piramal Critical Care, Inc. 
Isopropyl alcohol Sigma Aldrich MFCD00011674
NdFeB magnet 2" Dia x 1" thick Amazing magnets D1000P Axially magnetized disc magnet with poles on flat faces
Over-The-Wire trifold balloon N/A N/A Any commercially available OTW trifold balloon can be used
Phosphate buffered saline Life Technologies 10010-023 Commonly known as PBS
Sodium Bicarbonate (NaHCO3) Sigma Aldrich MFCD00003528
Sodium pentobarbital Zoetis Commercial Name: Sleepaway (26%), FatalPlus, Beuthanasi.  Controlled substance to be ordered only by licensed veternarian
SolidWorks Dassault systems N/A Software
SpinTJ-020 micro sensor MicroMagneitcs Sensible Solutions N/A Long probe STJ-020 microsensor
SPION Mayo Clinic N/A Nanoparticles synthesized internally (Ref: Lee, S. J. et al. Nanoparticles of magnetic ferric oxides encapsulated with poly(D,L latide-co-glycolide) and their applications to magnetic resonance imaging contrast agent. J Magn Magn Mater 272, 2432-2433, doi:DOI 10.1016/j.jmmm.2003.12.416 (2004))
Telazol Zoetis Controlled substance to be ordered only by licensed veternarian
Trypsin EDTA Life Technologies 25200-056 Gibco, Grand Island, NY
Xylazine Bayer Animal Health Commercial name: Rompun. Controlled sunstance to be ordered only by a licensed veternarian

References

  1. Garg, S., Serruys, P. W. Coronary stents: current status. J Am Coll Cardiol. 56, 1-42 (2010).
  2. Austin, D., et al. Drug-eluting stents versus bare-metal stents for off-label indications: a propensity score-matched outcome study. Circ Cardiovasc Interv. 1 (1), 45-52 (2008).
  3. Polyak, B., et al. High field gradient targeting of magnetic nanoparticle-loaded endothelial cells to the surfaces of steel stents. P Natl Acad Sci USA. 105 (2), 698-703 (2008).
  4. Tassiopoulos, A. K., Greisler, H. P. Angiogenic mechanisms of endothelialization of cardiovascular implants: a review of recent investigative strategies. J Biomat Sci-Polym E. 11 (11), 1275-1284 (2000).
  5. Pislaru, S. V., et al. Magnetic forces enable rapid endothelialization of synthetic vascular grafts. Circulation. 114, I314-I318 (2006).
  6. Uthamaraj, S., et al. Design and validation of a novel ferromagnetic bare metal stent capable of capturing and retaining endothelial cells). Ann Biomed Eng. 42 (12), 2416-2424 (2014).
  7. Gulati, R., et al. Diverse origin and function of cells with endothelial phenotype obtained from adult human blood. Circ Res. 93 (11), 1023-1025 (2003).
  8. Lee, S. J., et al. Nanoparticles of magnetic ferric oxides encapsulated with poly(D,L latide-co-glycolide) and their applications to magnetic resonance imaging contrast agent. J Magn Magn Mater. 272 (3 Special Issue), 2432-2433 (2004).
  9. Lee, S. J., et al. Magnetic enhancement of iron oxide nanoparticles encapsulated with poly(D,L-latide-co-glycolide). Colloid Surface A. (1-3), 255-251 (1016).
  10. Forbes, Z. G., et al. Locally targeted drug delivery to magnetic stents for therapeutic applications. Computer Architectures for Machine Perception, 2003 IEEE International Workshop on. , 1-6 (2003).
  11. Rathel, T., et al. Magnetic Stents Retain Nanoparticle-Bound Antirestenotic Drugs Transported by Lipid Microbubbles. Pharm Res-Dordr. 29 (5), 1295-1307 (2012).
  12. Gunn, J., Cumberland, D. Stent coatings and local drug delivery – state of the art. Eur Heart J. 20 (23), 1693-1700 (1999).
  13. Lu, A., Jia, G., Gao, G., Wang, X. The effect of magnetic stent on coronary restenosis after percutaneous transluminal coronary angioplasty in dogs. Chin Med J (Engl. 114 (8), 821-823 (2001).
  14. Kempe, H., Kempe, M. The use of magnetite nanoparticles for implant-assisted magnetic drug targeting in thrombolytic therapy. Biomaterials. 31 (36), 9499-9510 (2010).
  15. Chorny, M., et al. Targeting stents with local delivery of paclitaxel-loaded magnetic nanoparticles using uniform fields. P Natl Acad Sci USA. 107 (18), 8346-8351 (2010).
  16. Polyak, B., Friedman, G. Magnetic targeting for site-specific drug delivery: applications and clinical potential. Expert Opin Drug Del. 6 (1), 53-70 (2009).
  17. Liu, J. Y., et al. Magnetic stent hyperthermia for esophageal cancer: an in vitro investigation in the ECA-109 cell line. Oncol Rep. 27 (3), 791-797 (2012).
  18. Gunn, J., Cumberland, D. Does stent design influence restenosis. Eur Heart J. 20 (14), 1009-1013 (1999).
  19. Aviles, M. O., et al. In vitro study of ferromagnetic stents for implant assisted-magnetic drug targeting. J Magn Magn Mater. 311 (1), 306-311 (2007).
  20. Mardinoglu, A., et al. Theoretical modelling of physiologically stretched vessel in magnetisable stent assisted magnetic drug targeting application. J Magn Magn Mater. 323 (3-4), 324-329 (2011).
  21. Liu, Z. Y., et al. Stress corrosion cracking of 2205 duplex stainless steel in H2S-CO2 environment. J Mater Sci. 44 (16), 4228-4234 (2009).
  22. Alverez-Armas, I., Degallaix-Moreuill, S. . Duplex stainless steels. , (2009).
  23. Tefft, B. J., et al. Magnetizable Duplex Steel Stents Enable Endothelial Cell Capture. Ieee T Magn. 49 (1), 463-466 (2013).
  24. Pelton, A. R., et al. Fatigue and durability of Nitinol stents. J Mech Behav Biomed Mater. 1 (2), 153-164 (2008).
  25. Knowles, M., et al. Finite element analysis of a balloon-expandable stent and superior mesenteric arterial wall interaction. J Vasc Surg. 60 (6), 1722-1723 (2014).
  26. Veeram Reddy, S. R., et al. A novel biodegradable stent applicable for use in congenital heart disease: bench testing and feasibility results in a rabbit model. Catheter Cardiovasc Interv. 83 (3), 448-456 (2014).
  27. Shellock, F. G. MR imaging of metallic implants and materials: a compilation of the literature. AJR Am J Roentgenol. 151 (4), 811-814 (1988).
  28. Lopic, N., et al. Quantitative determination of magnetic force on a coronary stent in MRI. J Magn Reson Imaging. 37 (2), 391-397 (2013).
check_url/fr/53100?article_type=t

Play Video

Citer Cet Article
Uthamaraj, S., Tefft, B. J., Hlinomaz, O., Sandhu, G. S., Dragomir-Daescu, D. Ferromagnetic Bare Metal Stent for Endothelial Cell Capture and Retention. J. Vis. Exp. (103), e53100, doi:10.3791/53100 (2015).

View Video