Summary

的内肌浆网钙光学标测<sup> 2+</sup>和的Langendorff灌注兔心脏跨膜电位

Published: September 10, 2015
doi:

Summary

本文介绍了详细的协议和必要的跨膜电位(V M)双光学测绘和免费内部肌浆网(SR)设备在的Langendorff灌注兔心脏。此方法允许直接观察和第V 量化和SR Ca 2+动力学在完整心脏。

Abstract

Sarcoplasmic reticulum (SR) Ca2+ handling plays a key role in normal excitation-contraction coupling and aberrant SR Ca2+ handling is known to play a significant role in certain types of arrhythmia. Because arrhythmias are spatially distinct, emergent phenomena, they must be investigated at the tissue level. However, methods for directly probing SR Ca2+ in the intact heart remain limited. This article describes the protocol for dual optical mapping of transmembrane potential (Vm) and free intra-SR [Ca2+] ([Ca2+]SR) in the Langendorff-perfused rabbit heart. This approach takes advantage of the low-affinity Ca2+ indicator Fluo-5N, which has minimal fluorescence in the cytosol where intracellular [Ca2+] ([Ca2+]i) is relatively low but exhibits significant fluorescence in the SR lumen where [Ca2+]SR is in the millimolar range. In addition to revealing SR Ca2+ characteristics spatially across the epicardial surface of the heart, this approach has the distinct advantage of simultaneous monitoring of Vm, allowing for investigations into the bidirectional relationship between Vm and SR Ca2+ and the role of SR Ca2+ in arrhythmogenic phenomena.

Introduction

Dual optical mapping of intracellular Ca2+ and transmembrane potential (Vm) in the intact Langendorff-perfused heart has become a mainstay of investigations in cardiac electrophysiology, including mechanisms of arrhythmia and excitation-contraction coupling1-4. This approach has provided unprecedented knowledge into normal and abnormal electrophysiology and, importantly, into the bidirectional relationship between Vm and intracellular Ca2+. However, optical mapping of intracellular Ca2+ with high-affinity fluorescent indicators (such as Rhod-2 and Fluo-4) only reports on bulk changes in intracellular Ca2+ and is unable to distinguish whether these changes are due to transmembrane Ca2+ flux, release and reuptake into intracellular stores, or in most instances, some combination of both. Furthermore, high-affinity Ca2+ indicators have slow on-off kinetics and may not accurately report rapid changes in Ca2+ concentration5.

Each action potential triggers a rise in intracellular Ca2+, known as the intracellular Ca2+ transient (CaT). In the mammalian heart, approximately 70 – 90% of the total CaT is due to release of Ca2+ from the sarcoplasmic reticulum (SR) via opening of ryanodine receptors (RyRs)6. Within the SR, approximately half of the total Ca2+ is bound to calsequestrin (CSQ) and other intra-SR buffers7, which play an important role in SR Ca2+ homeostasis8,9. The amount of free SR Ca2+ dictates the driving force for SR Ca2+ release as well as gating of RyR, and therefore has a significant impact on the intracellular CaT. Furthermore, alterations in SR Ca2+ release or reuptake can, in turn, impact Vm via the electrogenic Na+-Ca2+ exchange, which may have arrhythmogenic consequences. Therefore, in addition to the CaT, monitoring of free SR Ca2+ can provide important insights into contractile and electrophysiological dysfunction.

Over the past several years, investigators have made significant advances in the monitoring of SR Ca2+ in isolated cardiac myocytes and from a single location on the intact heart. One such method requires rapid pulses of caffeine to open RyRs and the SR Ca2+ content is then inferred or calculated from the immediate rise in intracellular Ca2+10. Another intriguing approach uses low-affinity Ca2+ indicators, such as Fluo-5N11 or Mag-Fluo412, which bind to free SR Ca2+. These indicators have dissociation constants (Kd) in the range of 10 – 400 μM and therefore exhibit minimal fluorescence in the cytosol compared to the SR lumen, where the Ca2+ concentration ([Ca2+]SR) is in the millimolar range. Using low-affinity Ca2+ indicators, several aspects of SR Ca2+ cycling have been investigated at the level of the isolated myocyte, including fractional SR Ca2+ release and the mechanisms of Ca2+ alternans13,14. However, in order to fully understand the heterogeneous nature of SR Ca2+ cycling in the intact heart and the role of SR Ca2+ in spatially distinct arrhythmic phenomena, methods for imaging SR Ca2+ across the epicardial surface of the intact heart are required15.

This article describes methodology for dual optical mapping of free SR Ca2+ and Vm in the intact Langendorff-perfused rabbit heart with the low-affinity Ca2+ indicator Fluo-5N. In addition to revealing SR Ca2+ characteristics spatially across the epicardial surface of the heart, this approach has the advantage of simultaneous monitoring of Vm, allowing for investigations into the bidirectional relationship between Vm and SR Ca2+.

Protocol

所有涉及动物的程序由加州大学戴维斯分校的动物护理和使用委员会批准,并坚持以指南实验动物卫生的国家机构发布的管理和使用。 1.准备准备提前和存储改良台氏液2浓缩(25X)的股票在4℃下:(1)股票我(在MM:氯化钠3205, 氯化钙 32.5,氯化钾117.5,氢化钠2 PO 4 29.75, 氯化镁 26.25)和(2)股票II(毫米: 碳酸氢钠 500)?…

Representative Results

图1A示出了用于双重V M和SR 的 Ca 2+映射的光学配置的示意图。与此设置,有一个在V 米和SR 的 Ca 2+信号(图1B)的完整光谱分离。用于将Fluo-5N染料加载的双回路灌注系统的示意图示于图1C。图1D示出了心脏的灌注菜水平方向。代表性V M和过程中从对心脏的心外膜表面的不同位置连续起搏的SR 的 Ca 2+?…

Discussion

成功的关键的Fluo-5N染料加载是小容积循环灌流设置,其允许高的Fluo-5N浓度,而不需要大量的染料,加载时间(1小时)的长度,并执行装载在RT。如果载入在生理温度,细胞的酶活性迅速裂解当染料穿过细胞膜,捕集染料分子在细胞质中,而不是使它们穿过的SR膜的-AM标签进行。在RT,然而,酶活性被减慢和染料的足够量可以跨越两个细胞膜和SR膜-AM标记之前被裂解,捕捉在SR中的染料。

<p class="…

Divulgations

The authors have nothing to disclose.

Acknowledgements

This work was supported in part by the US National Institutes of Health (R01 HL 111600) and the American Heart Association (12SDG9010015).

Materials

NaCl Fisher Scientific S271-1 Component of Tyrode's solution
CaCl2 (2H2O) Fisher Scientific C79-500 Component of Tyrode's solution
KCl Fisher Scientific S217-500 Component of Tyrode's solution
MgCl2 (6H2O) Fisher Scientific M33-500 Component of Tyrode's solution
NaH2PO4 (H2O) Fisher Scientific S369-500 Component of Tyrode's solution
NaHCO3 Fisher Scientific S233-3 Component of Tyrode's solution
D-Glucose Fisher Scientific D16-1 Component of Tyrode's solution
95% O2 5% CO2 AirGas carbogen For oxygenation and pH of Tyrode's solution
Blebbistatin Tocris Bioscience 1760 Excitation-contraction uncoupler
RH237 Biotium 61018 Voltage-sensitive dye
Fluo-5N AM Invitrogen F-26915 Low-affinity Ca2+ indicator; Alternative: Invitrogen F-14204; Loading must be performed at room temperature
Pluronic F127 Biotium 59004 For Ca2+ indicator loading; Warm until the solutiion is clear before use
Dimethyl sulphoxide (DMSO) Sigma-Aldrich D2650 For dissolving blebbistatin and dyes
Filter EMD Millipore NY1104700 11um in-line filter
Pressure Transducer WPI BLPR2 For measuring perfusion pressure
Transbridge Transducer Amplifier WPI SYS-TBM4M For transducing/amplifing pressure signal; PowerLab may also be used with appropriate BioAmp
PowerLab 26T ADInstruments For continuous recording of pressure and ECG signals
THT Macroscope SciMedia Macroscopic optical setup. Details: 0.63x objective (NA=0.31), 2x condensing objective, resultant field of view = 3.1×3.1 cm, depth of focus = ~1.5mm
MiCam Ultima-L CMOS SciMedia Optical mapping cameras
Precision LED Spot Light Mightex PLS-0470-030-15-S LED light source

References

  1. Herron, T. J., Lee, P., Jalife, J. Optical imaging of voltage and calcium in cardiac cells. tissues. Circulation research. 110, 609-623 (2012).
  2. Efimov, I. R., Nikolski, V. P., Salama, G. Optical imaging of the heart. Circulation research. 95, 21-33 (2004).
  3. Lou, Q., Li, W., Efimov, I. R. Multiparametric optical mapping of the Langendorff-perfused rabbit heart. Journal of visualized experiments : JoVE. , (2011).
  4. Choi, B. R., Salama, G. Simultaneous maps of optical action potentials and calcium transients in guinea-pig hearts: mechanisms underlying concordant alternans. The Journal of physiology. 529 (Pt 1), 171-188 (2000).
  5. Kong, W., Fast, V. G. The role of dye affinity in optical measurements of Cai(2+) transients in cardiac muscle. American journal of physiology. Heart and circulatory physiology. 307, H73-H79 (2014).
  6. Bers, D. M. . Excitation-Contraction Coupling and Cardiac Contractile Force. , (2001).
  7. Bers, D. M., Shannon, T. R. Calcium movements inside the sarcoplasmic reticulum of cardiac myocytes. Journal of molecular and cellular cardiology. , (2013).
  8. Knollmann, B. C. New roles of calsequestrin and triadin in cardiac muscle. The Journal of physiology. 587, 3081-3087 (2009).
  9. Chen, H., et al. Mechanism of calsequestrin regulation of single cardiac ryanodine receptor in normal and pathological conditions. The Journal of general physiology. 142, 127-136 (2013).
  10. Diaz, M. E., O’Neill, S. C., Eisner, D. A. Sarcoplasmic reticulum calcium content fluctuation is the key to cardiac alternans. Circulation research. 94, 650-656 (2004).
  11. Shannon, T. R., Guo, T., Bers, D. M. Ca2+ scraps: local depletions of free [Ca2+] in cardiac sarcoplasmic reticulum during contractions leave substantial Ca2+ reserve. Circulation research. 93, 40-45 (2003).
  12. Kornyeyev, D., Reyes, M., Escobar, A. L. Luminal Ca(2+) content regulates intracellular Ca(2+) release in subepicardial myocytes of intact beating mouse hearts: effect of exogenous buffers. American journal of physiology. Heart and circulatory physiology. 298, H2138-H2153 (2010).
  13. Picht, E., DeSantiago, J., Blatter, L. A., Bers, D. M. Cardiac alternans do not rely on diastolic sarcoplasmic reticulum calcium content fluctuations. Circulation research. 99, 740-748 (2006).
  14. Shkryl, V. M., Maxwell, J. T., Domeier, T. L., Blatter, L. A. Refractoriness of sarcoplasmic reticulum Ca2+ release determines Ca2+ alternans in atrial myocytes. American journal of physiology. Heart and circulatory physiology. 302, H2310-H2320 (2012).
  15. Wang, L., et al. Optical mapping of sarcoplasmic reticulum Ca2+ in the intact heart: ryanodine receptor refractoriness during alternans and fibrillation. Circulation research. 114, 1410-1421 (2014).
  16. Wengrowski, A. M., Kuzmiak-Glancy, S., Jaimes, R., Kay, M. W. NADH Changes During Hypoxia, Ischemia, and Increased Work Differ Between Isolated Heart Preparations. American journal of physiology. Heart and circulatory physiology. , (2013).
  17. Fedorov, V. V., et al. Application of blebbistatin as an excitation-contraction uncoupler for electrophysiologic study of rat and rabbit hearts. Heart rhythm : the official journal of the Heart Rhythm Society. 4, 619-626 (2007).
  18. Myles, R. C., Wang, L., Kang, C., Bers, D. M., Ripplinger, C. M. Local beta-adrenergic stimulation overcomes source-sink mismatch to generate focal arrhythmia. Circulation research. 110, 1454-1464 (2012).
  19. Marks, A. R. Calcium cycling proteins and heart failure: mechanisms and therapeutics. The Journal of clinical investigation. 123, 46-52 (2013).
  20. Cutler, M. J., et al. Targeted sarcoplasmic reticulum Ca2+ ATPase 2a gene delivery to restore electrical stability in the failing heart. Circulation. 126, 2095-2104 (2012).
check_url/fr/53166?article_type=t

Play Video

Citer Cet Article
Wang, L., De Jesus, N. M., Ripplinger, C. M. Optical Mapping of Intra-Sarcoplasmic Reticulum Ca2+ and Transmembrane Potential in the Langendorff-perfused Rabbit Heart. J. Vis. Exp. (103), e53166, doi:10.3791/53166 (2015).

View Video