Summary

从构造到晶体 - 迈向β桶外膜蛋白的结构解析

Published: July 04, 2016
doi:

Summary

β-barrel outer membrane proteins (OMPs) serve many functions within the outer membranes of Gram-negative bacteria, mitochondria, and chloroplasts. Here, we hope to alleviate a known bottleneck in structural studies by presenting protocols for the production of β-barrel OMPs in sufficient quantities for structure determination by X-ray crystallography or NMR spectroscopy.

Abstract

Membrane proteins serve important functions in cells such as nutrient transport, motility, signaling, survival and virulence, yet constitute only ~1% percent of known structures. There are two types of membrane proteins, α-helical and β-barrel. While α-helical membrane proteins can be found in nearly all cellular membranes, β-barrel membrane proteins can only be found in the outer membranes of mitochondria, chloroplasts, and Gram-negative bacteria. One common bottleneck in structural studies of membrane proteins in general is getting enough pure sample for analysis. In hopes of assisting those interested in solving the structure of their favorite β-barrel outer membrane protein (OMP), general protocols are presented for the production of target β-barrel OMPs at levels useful for structure determination by either X-ray crystallography and/or NMR spectroscopy. Here, we outline construct design for both native expression and for expression into inclusion bodies, purification using an affinity tag, and crystallization using detergent screening, bicelle, and lipidic cubic phase techniques. These protocols have been tested and found to work for most OMPs from Gram-negative bacteria; however, there are some targets, particularly for mitochondria and chloroplasts that may require other methods for expression and purification. As such, the methods here should be applicable for most projects that involve OMPs from Gram-negative bacteria, yet the expression levels and amount of purified sample will vary depending on the target OMP.

Introduction

β桶的OMPs只能在线粒体,叶绿体外膜中找到,和革兰氏阴性菌1-3。而他们服务相似的角色为α螺旋的蛋白质,它们有非常不同的褶皱包括中央膜包埋β桶结构域范围从8-26反平行β链与各链被紧密连接到两个相邻的股线的( 图12)。的β桶结构域的第一个和最后一个链,然后与另一个在反平行的方式进行交互,几乎完全(除线粒体VDAC),以关闭和从周围膜密封β桶结构域。所有β桶的OMPs具有不同序列和长度的胞外环从而起到配体的相互作用和/或蛋白质 – 蛋白质接触中起重要作用,与这些环有时是75个残基,如在奈瑟氏菌转发现结合亲大蛋白A(TBPA)4。 β桶外膜蛋白也可以有哪些作为其他域的蛋白质的功能性用途的N端或C端周质的扩展( 例如,巴马5-7,FimD 8,9,法德勒10)。而存在11许多类型的β桶的OMPs的,两种较常见的类型在下面描述为用于那些不太熟悉的领域中,(1)的TonB依赖性转运和(2)autotransporters例子。

的TonB依赖性转运( 例如,FEPA,TBPA,BtuB,CIR, )是用于营养进口基本与包含一个N-末端插头域选自由被发现夹着内侧的22链β-C-末端〜150个残基的桶域嵌入到外膜12( 图3)。虽然这种插头域防止基板从自由穿过枪管域,底物结合诱导插头域第内的构象变化在导致孔形成(通过插头重排或插头的部分/完整喷射)然后可以促进跨外膜衬底输送到周质。的TonB依赖性转运是革兰氏阴性细菌的一些致病菌株的存活特别重要,如已经进化出劫持营养素如来自人类宿主蛋白质4,13,14铁直接专门转运脑膜炎奈瑟氏球菌

Autotransporters属于革兰氏阴性菌的V型分泌系统,是指带有一个β桶结构域(通常为12-链与ESTA和ESPP)的是任一分泌或提出了在β-桶外膜蛋白和一位乘客域单元15,16( 图3)的表面上。这些β桶的OMPs往往成为在细胞存活和毒力的重要作用与服务于乘客域或者作为蛋白酶,粘附,和/或其它EFfector介导的发病机制。

结构的方法,如X射线晶体学,核磁共振光谱,和电子显微镜(EM)允许我们确定在原子分辨率可反过来用于破译它们外膜内究竟如何发挥作用的外膜蛋白的模型。然后可用于药物和疫苗的开发,如果适用本宝贵信息。例如,转铁蛋白结合蛋白A(TBPA)被奈瑟氏球菌的表面上发现的和所需的发病机制,因为它直接结合人转铁蛋白,然后提取并导入铁为自身的生存。无TBPA, 奈瑟不能从人类宿主清除铁和呈现非致病。势必TBPA 4人转铁的晶体结构得到解决之后,它成为更清晰的两种蛋白质如何相关,哪些区域TBPA介导的相互作用,什么残基为铁提取重要由TBPA,和怎么一会开发针对脑膜炎奈瑟氏疗法针对跨界保护区。因此,给定的β桶的OMPs的革兰氏阴性菌的生存和发病机制中的重要性,以及在线粒体和叶绿体功能,以及需要了解这个唯一的类膜蛋白的额外的结构信息,并且其中它们的功能的系统,一般的协议都带有表达和结构方法在高位纯化的目标外膜蛋白为特征的总体目标。

Protocol

1.克隆与表达注意:为了使结构研究,高度纯化的蛋白质的足够的数量必须准备,这通常与目标β桶外膜蛋白在大肠杆菌中的克隆和表达(OMP)开始大肠杆菌 ( 图4)。迄今为止,所有的β桶的OMP结构,包括那些结构线粒体VDAC,已经从细菌表达的蛋白11的。这里,一般协议提出了克隆,并直接表达β桶的OMPs为(1)天然表达到细菌膜和(2)表达?…

Representative Results

YiuR是一个依赖的TonB铁转运即对鼠疫耶尔森菌一个假定的疫苗的目标。使用微阵列分析它最初鉴定。这里,被送往确定利用X射线晶体YiuR的结构的步骤概述( 图9)。用于克隆,YiuR的(去掉N端信号序列)的DNA序列进行PCR从基因组DNA扩增并亚克隆到含N-末端PELB信号序列和10×组氨酸亲和标签后跟一个TEV蛋白酶位点的载体。对于表达,含YiuR质粒…

Discussion

β桶的OMPs服务于革兰氏阴性菌,线粒体和叶绿体重要作用,并且用于结构分析,提供了大量关于在这些相应的细胞器的外膜基本分子机制信息的重要目标。然而,对于结构分析产生足够样品并不总是直截了当,因此,一般的管道提出了生产足够数量的目标β桶的OMPs结构测定的,详细说明从构建体晶体的过程。虽然这些协议已被测试,发现从革兰氏阴性细菌最外膜蛋白工作,有其局限性,有一些目…

Divulgations

The authors have nothing to disclose.

Acknowledgements

We would like to thank Herve Celia of the CNRS for providing the UV images and Chris Dettmar and Garth Simpson in the Department of Chemistry at Purdue University for providing the SONICC images. We would like to acknowledge funding from the National Institute of Diabetes and Digestive and Kidney Diseases and the Intramural Research Program at the National Institutes of Health. Additionally, we would like to acknowledge additional funding from the National Institute of General Medical Sciences (A.M.S. and C.J.), National Institute of Allergy and Infectious Diseases (N.N. 1K22AI113078-01), and the Department of Biological Sciences at Purdue University (N.N.).

Materials

Crystallization Robot TTP Labtech, Art Robbins Any should work here, except for LCP crystallization
PCR thermocycler Eppendorf, BioRad
Media Shaker New Brunswick, Infors HT
UV-vis spectrometer Eppendorf
SDS-PAGE apparatus BioRad 1645050, 1658005
SDS-PAGE and native gels BioRad, Life Technologies 4561084, EC6035BOX (BN1002BOX)
AkTA Prime GE Healthcare
AkTA Purifier GE Healthcare
Microcentrifuge Eppendorf
Centrifuge (low-medium speed) Beckman-Coulter
Ultracentrifuge (high speed) Beckman-Coulter
SS34 rotor Sorvall
Type 45 Ti rotor Beckman-Coulter
Type 70 Ti rotor Beckman-Coulter
Dounce homogenizer Fisher Scientific 06 435C
Emulsiflex Avestin
Dialysis tubing Sigma D9652
LCP tools Hamilton, TTP Labtech
VDX 24 well plates Hampton Research HR3-172
Sandwich plates Hampton Research, Molecular Dimensions HR3-151, MD11-50 (MD11-53)
Grace Crystallization sheets Grace Bio-Labs 875238
HiPrep S300 HR column GE Healthcare 17-1167-01
Q-Sepharose column GE Healthcare 17-0510-01
Crystallization screens Hampton Research, Qiagen, Molecular Dimensions
Gas-tight syringe (100 mL) Hamilton  ????

References

  1. Walther, D. M., Rapaport, D., Tommassen, J. Biogenesis of beta-barrel membrane proteins in bacteria and eukaryotes: evolutionary conservation and divergence. Cell Mol Life Sci. 66, 2789-2804 (2009).
  2. Ricci, D. P., Silhavy, T. J. The Bam machine: A molecular cooper. Biochim Biophys Acta. 1818, 1067-1084 (2012).
  3. Hagan, C. L., Silhavy, T. J., Kahne, D. beta-Barrel membrane protein assembly by the Bam complex. Ann Rev of Biochem. 80, 189-210 (2011).
  4. Noinaj, N., et al. Structural basis for iron piracy by pathogenic Neisseria. Nature. 483, 53-58 (2012).
  5. Noinaj, N., et al. Structural insight into the biogenesis of beta-barrel membrane proteins. Nature. 501, 385-390 (2013).
  6. Gatzeva-Topalova, P. Z., Walton, T. A., Sousa, M. C. Crystal structure of YaeT: conformational flexibility and substrate recognition. Structure. 16, 1873-1881 (2008).
  7. Kim, S., et al. Structure and function of an essential component of the outer membrane protein assembly machine. Science. 317, 961-964 (2007).
  8. Geibel, S., Procko, E., Hultgren, S. J., Baker, D., Waksman, G. Structural and energetic basis of folded-protein transport by the FimD usher. Nature. 496, 243-246 (2013).
  9. Phan, G., et al. Crystal structure of the FimD usher bound to its cognate FimC-FimH substrate. Nature. 474, 49-53 (2011).
  10. van den Berg, B., Black, P. N., Clemons, W. M., Rapoport, T. A. Crystal structure of the long-chain fatty acid transporter FadL. Science. 304, 1506-1509 (2004).
  11. Fairman, J. W., Noinaj, N., Buchanan, S. K. The structural biology of beta-barrel membrane proteins: a summary of recent reports. Curr Op Struct Bio. 21, 523-531 (2011).
  12. Noinaj, N., Guillier, M., Barnard, T. J., Buchanan, S. K. TonB-dependent transporters: regulation, structure, and function. Ann Rev of Micro. 64, 43-60 (2010).
  13. Siburt, C. J., et al. Hijacking transferrin bound iron: protein-receptor interactions involved in iron transport in N. gonorrhoeae. Metallomics. 1, 249-255 (2009).
  14. Cornelissen, C. N., Hollander, A. TonB-Dependent Transporters Expressed by Neisseria gonorrhoeae. Front in Micro. 2 (117), (2011).
  15. Dautin, N., Bernstein, H. D. Protein secretion in gram-negative bacteria via the autotransporter pathway. Ann Rev of Micro. 61, 89-112 (2007).
  16. Leo, J. C., Grin, I., Linke, D. Type V secretion: mechanism(s) of autotransport through the bacterial outer membrane. Phil Trans of the Royal Soc of London. Series B, Biological Sciences. 367, 1088-1101 (2012).
  17. Buchanan, S. K., Yamashita, S., Fleming, K. G., Engelman, E. H., Tamm, L. K. . Comprehensive Biophysics. 5, 139-163 (2011).
  18. Buchanan, S. K., et al. Structure of colicin I receptor bound to the R-domain of colicin Ia: implications for protein import. EMBO J. 26, 2594-2604 (2007).
  19. Yamashita, S., et al. Structural insights into Ail-mediated adhesion in Yersinia pestis. Structure. 19, 1672-1682 (2011).
  20. Aslanidis, C., de Jong, P. J. Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res. 18, 6069-6074 (1990).
  21. Haun, R. S., Serventi, I. M., Moss, J. Rapid reliable ligation-independent cloning of PCR products using modified plasmid vectors. BioTechniques. 13, 515-518 (1992).
  22. Rosenbusch, J. P. Characterization of the major envelope protein from Escherichia coli. Regular arrangement on the peptidoglycan and unusual dodecyl sulfate binding. J Biol Chem. 249, 8019-8029 (1974).
  23. Barnard, T. J., Wally, J. L., Buchanan, S. K., Coligan, J. E. Crystallization of integral membrane proteins. Curr Prot in Prot Science. Chapter 17, Unit 17 19 (2007).
  24. Ujwal, R., Abramson, J. High-throughput crystallization of membrane proteins using the lipidic bicelle method. JoVE. , e3383 (2012).
  25. Faham, S., Ujwal, R., Abramson, J., Bowie, J. U. Practical Aspects of Membrane Proteins Crystallization in Bicelles. Curr Topics in Membranes. 63, 111-127 (2009).
  26. Li, D., Boland, C., Walsh, K., Caffrey, M. Use of a robot for high-throughput crystallization of membrane proteins in lipidic mesophases. JoVE. , e4000 (2012).
  27. Liu, W., Cherezov, V. Crystallization of membrane proteins in lipidic mesophases. JoVE. , (2011).
  28. Buchanan, S. K. Overexpression and refolding of an 80-kDa iron transporter from the outer membrane of Escherichia coli. Biochem Soc Trans. 27, 903-908 (1999).
  29. Buchanan, S. K. Beta-barrel proteins from bacterial outer membranes: structure, function and refolding. Curr Op in Struct Bio. 9, 455-461 (1999).
  30. Stanley, A. M., Fleming, K. G. The process of folding proteins into membranes: challenges and progress. Arch of Biochem and Biophysics. 469, 46-66 (2008).
  31. Pautsch, A., Schulz, G. E. Structure of the outer membrane protein A transmembrane domain. Nature Struct Bio. 5, 1013-1017 (1998).
  32. Cowan, S. W., et al. The structure of OmpF porin in a tetragonal crystal form. Structure. 3, 1041-1050 (1995).
  33. Ujwal, R., et al. The crystal structure of mouse VDAC1 at 2.3 A resolution reveals mechanistic insights into metabolite gating. PNAS. 105, 17742-17747 (2008).
  34. Robert, V., et al. Assembly factor Omp85 recognizes its outer membrane protein substrates by a species-specific C-terminal motif. PLoS Bio. 4, e377 (2006).
  35. Paramasivam, N., Habeck, M., Linke, D. Is the C-terminal insertional signal in Gram-negative bacterial outer membrane proteins species-specific or not?. BMC Genomics. 13, 510 (2012).
  36. Agah, S., Faham, S. Crystallization of membrane proteins in bicelles. Methods in Mol Bio. 914, 3-16 (2012).
  37. Ujwal, R., Bowie, J. U. Crystallizing membrane proteins using lipidic bicelles. Methods. 55, 337-341 (2011).
  38. Cherezov, V. Lipidic cubic phase technologies for membrane protein structural studies. Cur Op in Struct Bio. 21, 559-566 (2011).
  39. Luecke, H., Schobert, B., Richter, H. T., Cartailler, J. P., Lanyi, J. K. Structure of bacteriorhodopsin at 1.55 A resolution. J Mol Biol. 291, 899-911 (1999).
  40. Kato, H. E., et al. Crystal structure of the channelrhodopsin light-gated cation channel. Nature. 482, 369-374 (2012).
  41. White, J. F., et al. Structure of the agonist-bound neurotensin receptor. Nature. 490, 508-513 (2012).
  42. Cherezov, V., et al. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science. 318, 1258-1265 (2007).
  43. Rasmussen, S. G., et al. Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature. 477, 549-555 (2011).
  44. Haupert, L. M., Simpson, G. J. Screening of protein crystallization trials by second order nonlinear optical imaging of chiral crystals (SONICC). Methods. 55, 379-386 (2011).
check_url/fr/53245?article_type=t

Play Video

Citer Cet Article
Noinaj, N., Mayclin, S., Stanley, A. M., Jao, C. C., Buchanan, S. K. From Constructs to Crystals – Towards Structure Determination of β-barrel Outer Membrane Proteins. J. Vis. Exp. (113), e53245, doi:10.3791/53245 (2016).

View Video