Summary

微生物诱导方解石沉淀通过介导<em> Sporosarcina巴斯德</em

Published: April 16, 2016
doi:

Summary

Protocols for microbiologically induced calcite precipitation (MICP) using the bacterium Sporosarcina pasteurii are presented here. The precipitated calcium carbonate was characterized through optical microscopy and scanning electron microscopy (SEM). It is also shown that exposure to MICP increases the compressive strength of sponge.

Abstract

被调查的特定的细菌在这里(S.巴氏 )是其独特的能力,在合适的条件下,促使尿素(尿素水解)的水解通过脲酶分泌的自然发生的环境。尿素水解的过程中,通过化学反应的链,导致碳酸钙沉淀的形成。这被称为微生物学诱导方解石降水(MICP)。对于MICP适宜的培养协议这里详述。最后,在显微镜下的不同模式的可视化实验以了解沉淀过程的各个方面。像光学显微技术,扫描电子显微镜(SEM)和X射线光电子能谱(XPS)进行了用于化学表征终产物。此外,这些沉淀物会堵塞一个天然的多孔介质毛孔里面的能力,通过定性实验,其中海绵证明棒用来模仿细孔网络与一系列长度尺度。在含有细菌细胞培养液中浸渍的海绵棒变硬由于其孔从化学沉淀的连续方法得到的的堵塞。相比其中被压缩和施加的外部负载的作用下挤压的控制海绵条时,而硬化杆能够支持相同重量很少变形此硬化海绵棒表现出优异的强度。

Introduction

Sporosarcina巴氏是革兰氏阳性细菌能够在高碱性环境(pH约10)1生存并且是细菌种类,可以成为一个所谓微生物学诱导方解石沉淀(MICP)2-4现象病原体之一。 MICP是一种方法,其中碳酸钙的沉淀是通过合适的环境的条件下某些微生物引起的。S.巴氏已假定近年来重要性由于其识别为在特定条件下诱导MICP的显著体积的可能剂。这种可能性来源于这样的事实即S.巴氏具有分泌丰富量的脲酶的独特能力。这种酶作为催化剂,促进尿素水分子的存在加速溶解(具有广泛和供应充足的天然存在的生化化合物)。通过反应的级联,该方法的最终LY导致带负电的碳酸根离子的生成。这些离子,又与正金属离子如钙,最终形成碳酸钙(方解石)的沉淀反应;因此标签MICP 5-9。

MICP的方法已经知道并研究了数十年10,11。在过去的几年中,MICP已经研究了一系列工程和环境应用,包括自下而上的绿化建设12,加强大型结构13,14和碳吸收和储存15,16的。

例如,Cunnigham 17等。人设计包含贝雷砂岩核心的高压中温流反应器。将反应器与细菌S.接种fridgidimarina和高压的超临界二氧化碳注入,生物量的孔隙体积内的大量积累的条件下超微电极观察到,这导致在透过性降低95%以上。 Jonkers和施兰根18研究在混凝土的自愈过程细菌的某些特殊菌株的效果。运入通过表面气孔进入孔隙网络外部的水有望激活休眠的细菌从而有助于结构强度通过MICP。托布勒19等。比较了S的尿素分解活性有利于大型MCIP条件下的地下水本土尿素分解缩影巴斯德发现S.巴斯德具有一致的能力,以提高方解石沉淀即使在土著社区缺乏事先脲酶活性。莫滕森20 et.al已经研究的外部因素,如土壤类型,氯化铵,盐度,氧浓度和MICP裂解细胞浓度的影响。他们论证了生物处理工艺非常稳健与RESP等在参数空间中的巨大差异证实了这一过程提供了一个合适的浓缩工艺,以加强细菌进行各种大型整治应用的健康。菲利普斯21等。人的实验设计与S.被注射后,研究在砂柱和砂岩核心的渗透性和强度的变化巴氏文化。他们发现,尽管渗透性下降了2 – 4倍,而断裂强度提高三倍。

S.巴氏及其在MICP的作用是积极的研究和有关化学沉淀机制若干问题的主题仍然没有完全理解。鉴于此,它拥有一套一致的标准化协议,以准确地文化S的适当丰富的股票是非常重要的巴斯德实现MICP。在这里,我们勾勒出一个严格的协议,以确保重复性和再现性。此马nuscript描述了详细的协议,培养S.巴斯德和适当丰富培养基,以诱使降雨。该过程通过各种显微镜技术如光学和扫描电子显微镜(SEM)和X射线光电子能谱(XPS)研究。手稿的重点是MICP的过程。程序,如:SEM和SIMS,是行之有效的标准协议,不单独介绍。

Protocol

注意:在下面描述的顺序执行的实验方案。细菌培养协议在第一节中讨论(也如图1所示 )。第2节描述欲得使用外部添加剂的培养基中的协议。部分3描述了一种用于多模式显微镜的协议。所有的单个组分的权重可以使用分析天平进行测定。各溶液的体积可以使用量筒来测定。 注意:正确的生物安全协议必须遵守的第1 – 2咨询机构安全办公室了解详情。 <p class…

Representative Results

S.巴斯德作为一个alkaliphile 24能够生存条件比较苛刻。当上述培养协议之后,和S.巴氏生长的腔室的内部,该细菌会导致碳酸钙的随时间( 图2A)的沉淀。 图2(b)表示在培养基中的细菌细胞群体的相差光学显微镜图像。单个细胞能够清楚地区分,与芽孢杆菌类的细菌很明显的特征棒状的形状。小棕色箭头已用于特异性突出两…

Discussion

关键步骤:该手稿详细介绍了协议的培养S的一个可行的样本巴斯德 。一旦培养已准备好,必须适当地富集。这是在实验的成功是至关重要的关键步骤,因为未提供适当的化学环境导致要么沉淀或其完全缺乏的很长的时间尺度。S.巴氏是几个外部机构相当敏感,并且必须以高度小心和精确的进行培养,以确保生化鲁棒性和可重复性。浓缩的程度和剂量现在已知口授…

Divulgations

The authors have nothing to disclose.

Acknowledgements

We wish to acknowledge the partners in the Helmholtz-Alberta Initiative, the Helmholtz Association and the University of Alberta, for the support resulting from participation in this collaboration. Research funding is provided by the Helmholtz Association’s Initiative and Networking Fund, the participating Helmholtz Centers and by the Government of Alberta through Alberta Environment’s ecoTrust program.

Dr. Tanushree Ghosh is gratefully acknowledged for her critical inputs at a number of crucial stages.

Materials

Petridish Fisher Scientific FB0875712 Petridishes being used as Agar plate
Pyrex Flasks Fisher Scientific S63268 Corning Erlenmeyer
Tris-Base Promega H5133 being used to make Tris-Buffer
Hydrochloric Acid Sigma-Aldrich H9892 1.0 N, Bioreagent, suitable for cell culture
Agar Powder Sigma-Aldrich A1296 microbiology tested, plant cell culture tested, cell culture tested, powder
Ammonium Sulphate Sigma-Aldrich A4418 for Molecular Biology
Yeast extract powder Sigma-Aldrich 51475
Measuring Cylinder Cole-Parmer CP08559GC Cole-Parmer Class A Graduated Cylinder w/Cal Cert,TC;1000ml,1/Pk
Analytical Balance OHAUS AX124E being used to measure weight of reagents
Autoclave Brinkmann 58619000
Autoclave Tape VWR 52428864
Aluminum Foil Sigma-Aldrich Z185140 being used to seal the flask before placing it in Autoclave
Bacterial Stock Cedarlane 11859 -80°C stock of S. pasteurii, ATCC No. is mentioned against Cat. No.
Mline Single-Channel Mechanical Pipettors, Variable Volume Biohit 725010 Marketed by VWR under catalog number 14005976
Micropipette Tip Fisher Scientific 212772B Used for scratching Agar plates
Incubator Binder 80079098 Microbiology Incubator,BF Series
Shaking Incubator VWR 14004300 VWR Signature Benchtop Shaking Incubators
Phosphate Buffer Saline (PBS)  Sigma-Aldrich P7059
BD Falcon Express Pipet-Aid Pipetting Device BD Biosciences 357590 Marketed by VWR under catalog number 53106220
Parafilm Sigma-Aldrich P7793 Being used to seal Agar plates
Urea Sigma-Aldrich U1250 Enrichment for nutrient medium
Sodium Bicarbonate Sigma-Aldrich S8875 Enrichment for nutrient medium
Calcium chloride Sigma-Aldrich C1016 Enrichment for nutrient medium

References

  1. Gibson, T. An investigation of the Bacillus pasteurii group. Journal of Bacteriology. 28, 491-502 (1934).
  2. Greenfield, L. J. Metabolism and concentration of calcium and magnesium and precipitation of calcium carbonate by a marine bacterium. Annals of the New York Academy of Sciences. 109, 23-45 (1963).
  3. Phillips, A. J. Engineered applications of ureolytic biomineralization: a review. Biofouling. 29, 715-733 (2013).
  4. Dhami, N. K., et al. Biomineralization of calcium carbonates and their engineered applications: a review. Frontiers in microbiology. 4, 314 (2013).
  5. Cuthbert, M. O., et al. Controls on the rate of ureolysis and the morphology of carbonate precipitated by S. Pasteurii biofilms and limits due to bacterial encapsulation. Ecological Engineering. 41, 32-40 (2012).
  6. Okwadha, G. D., et al. Optimum conditions for microbial carbonate precipitation. Chemosphere. 81, 1143-1148 (2010).
  7. Stocks-Fischer, S., et al. Microbiological precipitation of CaCO3. Soil Biology and Biochemistry. 31, 1563-1571 (1999).
  8. Lauchnor, E. G., et al. Bacterially induced calcium carbonate precipitation and strontium coprecipitation in a porous media flow system. Environmental science & technology. 47, 1557-1564 (2013).
  9. Al Qabany, A., et al. Factors Affecting Efficiency of Microbially Induced Calcite Precipitation. Journal of Geotechnical and Geoenvironmental Engineering. 138, 992-1001 (2012).
  10. Morita, R. Y. Calcite precipitation by marine bacteria. Geomicrobiology Journal. 2, 63-82 (2009).
  11. Chafetz, H. S. Marine peloids: A product of bacterially induced carbonate precipitation. Journal of Sedimentary Petrology. 56, 812-817 (1986).
  12. Whiffin, V. S. . Microbial CaCO3 precipitation for the production of biocement. , (2004).
  13. Paassen, L. A., et al. Scale up of BioGrout: a biological ground reinforcement method. Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering. , 2328-2333 (2009).
  14. Cunningham, A. B., et al. Microbially enhanced geologic containment of sequestered supercritical CO2. Energy Procedia. 1, 3245-3252 (2009).
  15. Mitchell, A. C., et al. Biofilm enhanced geologic sequestration of supercritical CO2. International Journal of Greenhouse Gas Control. 3, 90-99 (2009).
  16. Cunningham, A. B., et al. Reducing the risk of well bore leakage of CO2 using engineered biomineralization barriers. Energy Procedia. 4, 5178-5185 (2011).
  17. Jonkers, H. M., et al. Application of bacteria as self-healing agent for the development of sustainable concrete. Ecological Engineering. 36, 230-235 (2010).
  18. Tobler, D. J., et al. Transport of Sporosarcina pasteurii in sandstone and its significance for subsurface engineering technologies. Applied Geochemistry. 42, 38-44 (2014).
  19. Mortensen, B. M., et al. Effects of environmental factors on microbial induced calcium carbonate precipitation. Journal of applied microbiology. 111, 338-349 (2011).
  20. Phillips, A. J., et al. Potential CO2 leakage reduction through biofilm-induced calcium carbonate precipitation. Environmental science & technology. 47, 142-149 (2013).
  21. vander Heide, P. . X-ray Photoelectron Spectroscopy: An introduction to Principles and Practices. , (2011).
  22. Wiley, W. R., et al. Requirement of an alkaline pH and ammonia for substrate oxidation by Bacillus pasteurii. Journal of Bacteriology. 84, (1962).
  23. Tagliaferri, F., et al. Observing strain localisation processes in bio-cemented sand using x-ray imaging. Granular Matter. 13, 247-250 (2011).
  24. Kumar, A., et al. Microscale confinement features can affect biofilm formation. Microfluidics and Nanofluidics. 14, 895-902 (2012).
  25. Valiei, A., et al. A web of streamers: biofilm formation in a porous microfluidic device. Lab on a chip. 12, 5133-5137 (2012).
  26. . LIVE/DEAD Bacterial Viability kit, Two-color bacterial viability assay Available from: https://tools.lifetechnologies.com/content/sfs/manuals/mp07007.pdf (2004)
check_url/fr/53253?article_type=t

Play Video

Citer Cet Article
Bhaduri, S., Debnath, N., Mitra, S., Liu, Y., Kumar, A. Microbiologically Induced Calcite Precipitation Mediated by Sporosarcina pasteurii. J. Vis. Exp. (110), e53253, doi:10.3791/53253 (2016).

View Video