Summary

灯光诱杀银纳米结构通过转移印花在氢化微晶硅太阳能电池集成

Published: November 09, 2015
doi:

Summary

A viable transfer printing-based methodology to introduce plasmonic metal nanostructures in solar cells is described. Using nanopillar poly(dimethylsiloxane) stamps, an Ag-based ordered nanodisk array was integrated with standard hydrogenated microcrystalline Si solar cells, which led to improved device performances due to plasmonic light trapping.

Abstract

One of the potential applications of metal nanostructures is light trapping in solar cells, where unique optical properties of nanosized metals, commonly known as plasmonic effects, play an important role. Research in this field has, however, been impeded owing to the difficulty of fabricating devices containing the desired functional metal nanostructures. In order to provide a viable strategy to this issue, we herein show a transfer printing-based approach that allows the quick and low-cost integration of designed metal nanostructures with a variety of device architectures, including solar cells. Nanopillar poly(dimethylsiloxane) (PDMS) stamps were fabricated from a commercially available nanohole plastic film as a master mold. On this nanopatterned PDMS stamps, Ag films were deposited, which were then transfer-printed onto block copolymer (binding layer)-coated hydrogenated microcrystalline Si (µc-Si:H) surface to afford ordered Ag nanodisk structures. It was confirmed that the resulting Ag nanodisk-incorporated µc-Si:H solar cells show higher performances compared to a cell without the transfer-printed Ag nanodisks, thanks to plasmonic light trapping effect derived from the Ag nanodisks. Because of the simplicity and versatility, further device application would also be feasible thorough this approach.

Introduction

出现了对功能性纳米结构在广泛的技术领域中的应用的长期需求。其中一个为这一趋势的预期是打开的器件结构导致改进或创新演出新的设计。在太阳能电池的领域,例如,使用金属纳米结构已被积极探索,因为它们的有趣的光学即,等离子)特性,1潜在有益构造有效光捕获系统。2,3事实上,某些理论研究4 -6已经提出,这种等离子光俘获能达到效果超过了常规射线光学器件(纹理)为基础的光捕集极限。7其结果,制定战略以期望的金属纳米结构的太阳能电池集成已经变得越来越重要,为了实现这些理论预测。

许多策略都10,11这两者都被提出,以满足这种挑战。8-24这些包括,例如,简单的(低成本)金属膜8,9-或预先合成的金属纳米粒子的分散体的热退火,导致了成功示范等离子灯光诱杀。然而,应该指出的是,通过这些方法制造的金属纳米结构通常是具有挑战性的,以匹配的理论模型。与此相反,在半导体工业中传统的纳米加工技术,如光刻法和电子束光刻,12,13可以控制结构远低于亚100纳米的水平,但它们往往太昂贵和费时的适用于太阳能电池,其中以低成本大面积的能力是必不可少的。为了满足低成本,高通量,并具有纳米级的可控的大面积的要求,方法如纳米压印光刻,14-16软光刻,17,18 </sup>纳米球光刻,19-21和孔面罩胶体光刻22-24将大有可为。在这些选择中,我们已经开发出一种软平版印刷,先进转印印刷技术。25使用的纳米结构的聚(二甲基硅氧烷)(PDMS)的邮票和嵌段共聚物系粘合剂层,有序金属纳米结构的图案化可以容易地在多个技术实现的有关材料,包括那些用于太阳能电池。

本文的重点是介绍我们的转移印花方法的详细过程纳入有效的光捕获电浆纳米结构在现有的太阳能电池结构。作为一个示范的情况下,银纳米盘和薄膜氢化微晶硅(微晶硅:H)太阳能电池在该研究中选择的1),26虽然其它类型的金属和太阳能电池的,使用这个方法兼容。再加上它的进程简单的方法是感兴趣的不同研究人员的一个方便的工具来整合功能的金属纳米结构器件。

Protocol

1.准备PDMS邮票设置一个纳米孔的模具(nanoimprinted环烯烃聚合物的塑料膜,尺寸50毫米×50毫米)在一个聚四氟乙烯(PTFE)的容器。 权衡的乙烯基甲基硅氧烷 – 二甲基硅氧烷共聚物(0.76克为50毫米×50毫米的模具)在一次性玻璃瓶和铂乙烯基的有机硅氧烷混合它(6微升,使用一个数字式微型吸移管与一次性聚丙烯尖端)和2,4-, 6,8- tetramethyltetra-vinylcyclotetrasiloxane(24微升,使用一个数?…

Representative Results

图2概述了一般过程的Ag纳米盘的μC-Si的表面上的转移印花:H(N层)。简言之,将Ag膜(厚度:10-80 nm)的首先沉积通过电子束蒸发纳米柱PDMS压模的表面上。并行地,PS-b -P2VP溶液旋涂一个新鲜配制μC-Si的表面上:H n中层。随后,乙醇的液滴放置在PS-b -P2VP涂覆的表面,并且所述Ag沉积PDMS压模放置在乙醇-湿PS-b -P2VP表面。没有加压是必要的邮票,因为该?…

Discussion

在这篇文章中,双层硬/软PDMS复合被用作压模材料。27这种组合被认为是必要的,以精确地复制父纳米结构在模具中,这是一个六方密堆圆孔数组,其直径的230纳米,500纳米的深度,并且为460nm孔中心到中心的间距。当使用只有软的PDMS,印模总是导致了纳米结构很差表面(例如,在反相柱结构没有锋利的边缘),由于具有低杨氏模量; 28因此,银纳米盘的转移印花从未实现的。

<p…

Divulgations

The authors have nothing to disclose.

Acknowledgements

The authors thank New Energy and Industrial Technology Development Organization (NEDO) under Ministry of Economy, Trade, and Industry (METI), Japan, for the financial support.

Materials

Nanohole mold Scivax
http://www.scivax.com
FLH230/500-120
PTFE container Eishin
http://www.colbyeishin.com
n/a Custom made
Hard-PDMS materials Gelest
http://www.gelest.com/gelest/forms/Home/home.aspx
VDT-731 Vinylmethylsiloxane-dimethylsiloxane copolymer
SIP6831.1 Pt-divinyltetramethyldisiloxane complex
HMS-301 Methylhydrosiloxane-dimethylsiloxane copolymer
2,4,6,8-tetramethyltetra-vinylcyclotetrasiloxane Sigma-Aldrich
http://www.sigmaaldrich.com
396281 Additive for hard-PDMS
Soft-PDMS materials Dow Corning
http://www.dowcorning.com
Sylgard-184 Silicone precursor
PS-b-P2VP Polymer Source
http://polymersource.com
P5742-S2VP Mn × 103 = 133-b-132
Glass/SnO2:F substrates Asahi Glass Co. Ltd.
http://www.agc.com/english/company
Type VU Chemical mechanical polished by D-process Inc. (http://d-process.jp/index.html) to flatten the surfaces
Detergent Fruuchi Chemical Co.
http://www.furuchi.co.jp/eng/main.htm
Semico-clean 56 Used for the cleaning of Glass/SnO2:F substrates
ZnO:Ga supputtering target AGC Ceramics Co. Ltd.
http://www.agcc.jp/2005/en/index.html
5.7GZO
Ag supputtering target Mitsubishi Materials Co.
http://www.mitsubishicarbide.com/mmc/en/index.html
4NAg
Double-sided adhesive tape Nisshin EM Co.
http://nisshin-em.co.jp/information/carbontape.html
732
Polyimide tape Dupont
http://www.dupont.com/products-and-services/membranes-films/polyimide-films/brands/kapton-polyimide-film.html
Kapton 650S#25
Sn-Zn-based Solder Kuroda Techno Co., Ltd.
http://www.kuroda-techno.com/english/index.html
Cerasolzer AL-200
Digital micro pipette Nichiryo
http://www.nichiryo.co.jp/en/product/pipette/ex/index.html
00-NPX2-20
00-NPX2-200
00-NPX2-1000
Heating chamber Tokyo Rikakikai Co., Ltd.
http://www.eyelaworld.com/product_view.php?id=120
VOS-201SD
Electron beam evaporator
(two types)
Canon-Anelva
https://www.canon-anelva.co.jp/english/index.html
n/a Custom made
Arios
http://arios.com/
n/a Custom made
Sputtering system Ulvac
http://www.ulvac.co.jp/en
SBR-2306
PECVD system  Shimadzu Emit Co. Ltd.
http://www.shimadzu.co.jp/emit/en/
SLCM-13
Ar plasma system  Diner Electric Gmbh
http://www.plasma.de/index.html
Femto 
RIE system Samco Inc.
http://www.samcointl.com
RIE-10NR
Ultrasonic soldering device Colby-Eishin Enterprises, Inc.
http://www.colbyeishin.com/sub_sunbonder.htm
SUNBONDER
EQE measurement system Bunkoukeiki Co. Ltd.
http://www.bunkoukeiki.co.jp/
CEP-25BXS
J-V characteristics measurement system OTENTOSUN-5S-I/V
Amorphous Si reference cell WPVS-NPB-S1 For light intensity calibration
Digital multi-meter Keithley Instruments Inc.
http://www.keithley.com/
2400

References

  1. Murray, W. A., Barns, W. L. Plasmonic Materials. Adv. Mater. 19, 3771-3782 (2007).
  2. Atwater, H. A., Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205-213 (2010).
  3. Green, M. A., Pillai, S. Harnessing plasmonics for solar cells. Nat. Photon. 6, 130-132 (2012).
  4. Yu, Z., Raman, A., Fan, S. Fundamental limit of nanophotonic light trapping in solar cells. Proc. Natl. Acad. Sci. U.S.A. 107, 17491-17496 (2010).
  5. Callahan, D. M., Munday, J. N., Atwater, H. A. Solar Cell Light Trapping beyond the Ray Optic Limit. Nano Lett. 12, 214-218 (2012).
  6. Biswas, R., Xu, C. Photonic and plasmonic crystal based enhancement of solar cells — Theory of overcoming the Lambertian limit. J. Non-Cryst. Solids. 358, 2289-2294 (2012).
  7. Yablonovitch, E. Statistical ray optics. J. Opt. Soc. Am. 72, 899-907 (1982).
  8. Chantana, J., et al. Localized surface plasmon enhanced microcrystalline silicon solar cells. J. Non-Cryst. Solids. 358, 2319-2323 (2012).
  9. Tan, H., Santbergen, R., Smets, A. H. M., Zeman, M. Plasmonic Light Trapping in Thin-film Silicon Solar Cells with Improved Self-Assembled Silver Nanoparticles. Nano Lett. 12, 4070-4076 (2012).
  10. Mizuno, H., Sai, H., Matsubara, K., Kondo, M. Light Trapping by Ag Nanoparticles Chemically Assembled inside Thin-Film Hydrogenated Microcrystalline Si Solar Cells. Jpn. J. Appl. Phys. 51, 042302-1-4 (2012).
  11. Chen, X., et al. Broadband Enhancement in Thin-Film Amorphous Silicon Solar Cells Enabled by Nucleated Silver Nanoparticles. Nano Lett. 12, 2187-2192 (2012).
  12. Spinelli, P., et al. Optical Impedance Matching Using Coupled Plasmonic Nanoparticle Arrays. Nano Lett. 11, 1760-1765 (2011).
  13. Temple, T. L., Bagnall, D. M. Optical properties of gold and aluminium nanoparticles for silicon solar cell applications. J Appl. Phys. 109, 084343-1-13 (2011).
  14. Ferry, V. E., et al. Optimized Spatial Correlations for Broadband Light Trapping Nanopatterns in High Efficiency Ultrathin Film a-Si:H Solar Cells. Nano Lett. 11, 4239-4245 (2011).
  15. Paetzold, U. W., et al. Plasmonic reflection grating back contacts for microcrystalline silicon solar cells. Appl. Phys. Lett. 99, 181105-1-3 (2011).
  16. Chou, S. Y., Krauss, P. R., Renstrom, P. J. Nanoimprint Lithography. J. Vac. Sci. Technol. B. 14, 4129-4133 (1996).
  17. Na, S. -. I., et al. Efficient Polymer Solar Cells with Surface Relief Gratings Fabricated by Simple Soft Lithography. Adv. Funct. Mater. 18, 3956-3963 (2008).
  18. Xia, Y., Whitesides, G. M. Soft Lithography. Angew. Chem. Int. Ed. 37, 550-575 (1998).
  19. Battaglia, C., et al. Light Trapping in Solar Cells: Can Periodic Beat Random. ACS Nano. 6, 2790-2797 (2012).
  20. Hsu, C. -. M., et al. High-Efficiency Amorphous Silicon Solar Cell on a Periodic Nanocone BackReflector. Adv. Energy Mater. 2, 628-633 (2012).
  21. Hulteen, J. C., Van Duyne, R. P. Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces. J. Vac. Sci. Technol. A. 13, 1553-1558 (1995).
  22. Daif, O. E., et al. Front side plasmonic effect on thin silicon epitaxial solar cells. Sol. Energy Mater. Sol. Cells. 104, 58-63 (2012).
  23. Niesen, B., et al. Plasmonic Efficiency Enhancement of High Performance Organic Solar Cells with a Nanostructured Rear Electrode. Adv. Energy Mater. 3, 145-150 (2013).
  24. Fredriksson, H., et al. Hole-Mask Colloidal Lithography. Adv. Mater. 19, 4297-4302 (2007).
  25. Mizuno, H., Kaneko, T., Sakata, I., Matsubara, K. Capturing by self-assembled block copolymer thin films: transfer printing of metal nanostructures on textured surfaces. Chem. Commun. 50, 362-364 (2014).
  26. Mizuno, H., Sai, H., Matsubara, K., Takato, H., Kondo, M. Transfer-printed silver nanodisks for plasmonic light trapping in hydrogenated microcrystalline silicon solar cells. Appl. Phys. Express. 7, 112302-1-4 (2014).
  27. Odom, T. W., Love, J. C., Wolfe, D. B., Paul, K. E., Whitesides, G. M. Improved Pattern Transfer in Soft Lithography Using Composite Stamps. Langmuir. 18, 5314-5320 (2002).
  28. Schmid, H., Michel, B. Siloxane Polymers for High-Resolution, High-Accuracy Soft Lithography. Macromolecules. 33, 3042-3049 (2000).
  29. Loo, Y. -. L., Willett, R. L., Baldwin, K. W., Rogers, J. A. Interfacial Chemistries for Nanoscale Transfer Printing. J. Am. Chem. Soc. 124, 7654-7655 (2002).
  30. Hylton, N. P., et al. Loss mitigation in plasmonic solar cells: aluminium nanoparticles for broadband photocurrent enhancements in GaAs photodiodes. Sci. Rep. 3, 2874-1-6 (2013).
  31. Delamarche, E., et al. Microcontact Printing Using Poly(dimethylsiloxane) Stamps Hydrophilized by Poly(ethylene oxide) Silanes. Langmuir. 19, 8749-8758 (2003).
  32. Mizuno, H., Sai, H., Matsubara, K., Kondo, M. Plasmonic Light Trapping in Amorphous Si Solar Cells Using Periodic Ag Nanodisk Structures. MRS Proc. , 1627-1613 (2014).
check_url/fr/53276?article_type=t

Play Video

Citer Cet Article
Mizuno, H., Sai, H., Matsubara, K., Takato, H., Kondo, M. Integration of Light Trapping Silver Nanostructures in Hydrogenated Microcrystalline Silicon Solar Cells by Transfer Printing. J. Vis. Exp. (105), e53276, doi:10.3791/53276 (2015).

View Video