Summary

Konstruktion af Defineret Humane Engineered hjertevæv at studere Mekanismer for Cardiac Cell Therapy

Published: March 01, 2016
doi:

Summary

This manuscript describes the creation of defined engineered cardiac tissues using surface marker expression and cell sorting. The defined tissues can then be used in a multi-tissue bioreactor to investigate mechanisms of cardiac cell therapy in order to provide a functional, yet controlled, model system of the human heart.

Abstract

Human cardiac tissue engineering can fundamentally impact therapeutic discovery through the development of new species-specific screening systems that replicate the biofidelity of three-dimensional native human myocardium, while also enabling a controlled level of biological complexity, and allowing non-destructive longitudinal monitoring of tissue contractile function. Initially, human engineered cardiac tissues (hECT) were created using the entire cell population obtained from directed differentiation of human pluripotent stem cells, which typically yielded less than 50% cardiomyocytes. However, to create reliable predictive models of human myocardium, and to elucidate mechanisms of heterocellular interaction, it is essential to accurately control the biological composition in engineered tissues.

To address this limitation, we utilize live cell sorting for the cardiac surface marker SIRPα and the fibroblast marker CD90 to create tissues containing a 3:1 ratio of these cell types, respectively, that are then mixed together and added to a collagen-based matrix solution. Resulting hECTs are, thus, completely defined in both their cellular and extracellular matrix composition.

Here we describe the construction of defined hECTs as a model system to understand mechanisms of cell-cell interactions in cell therapies, using an example of human bone marrow-derived mesenchymal stem cells (hMSC) that are currently being used in human clinical trials. The defined tissue composition is imperative to understand how the hMSCs may be interacting with the endogenous cardiac cell types to enhance tissue function. A bioreactor system is also described that simultaneously cultures six hECTs in parallel, permitting more efficient use of the cells after sorting.

Introduction

Cardiac tissue engineering har avancerede kraftigt i det seneste årti, med flere grupper som publicerer resultaterne af fuldt funktionelle, slå væv fremstillet af både murine cardiomyocytter 1-6 og senest, menneskelige stamcelle-afledte hjertemyocytter 7-12. Den hjertevævet ingeniørområdet er drevet af to primære og væsentlige uafhængige mål: 1) at udvikle eksogene podninger, der kan transplanteres ind i svigtende hjerter til at forbedre funktionen 4-6; og 2) at udvikle in vitro modeller til at studere fysiologi og sygdom, eller som screening-værktøjer til terapeutisk udvikling 2,7.

Tre-dimensionel (3-D) cellekultur betragtes som afgørende for at udvikle næste generation af screening-værktøjer, som 3-D matrix afspejler en mere naturlig hjerte-mikromiljø end traditionelle 2-D monolag cellekultur; faktisk nogle aspekter af cellebiologi er fundamentalt anderledes i 2-D vs. 3-D kulturer 13,14 </sup>. Derudover er manipuleret hjertevæv konstrueret af helt definerede komponenter: en ekstracellulær matrix, og en cellepopulation. For traditionelle manipuleret humane hjertevæv, mens den ekstracellulære matrix sammensætning (normalt fibrin 9 eller kollagen 7,8,10) er strengt kontrolleret, input cellesammensætning er mindre veldefineret, med hele blandingen af celler fra en rettet hjertedifferentiering af enten embryonale stamceller (ESC 7,9) eller inducerede pluripotente stamceller (IPSC 10,12) er tilsat til vævene. Afhængigt af den specifikke cellelinie og effektiviteten af differentiering anvendte protokol, kan den resulterende procentdel af cardiomyocytter variere fra mindre end 25% til over 90% af den specifikke cardiomyocyte fænotype (dvs. ventricular-, atrial- eller pacemaker-lignende) kan også variere, selv de ikke-cardiomyocyte fraktion kan være meget heterogen 15,16 og ændre løbetiden for den differentierede hjerte- myocytes 17.

Nylige hjertevæv ingeniørarbejde har forsøgt at styre input population af celler, med enten en human embryonal stamcelle linje kardial reporter 8 eller celleoverflademarkører 18 er anvendt til at isolere den hjertemyocyt komponent af differentiering. Mens det i begyndelsen et væv sammensat af kun hjertemyocytter synes at være det ideelle, dette er i virkeligheden ikke tilfældet; hECTs udelukkende består af hjertemyocytter undlader at komprimere i funktionelle væv, med nogle grupper finde en 3: 1-forhold mellem hjertemyocytter: fibroblaster producerer den højeste ryk kraft 8. Ved hjælp af forskellige celleadskillelsesmetoder, herunder overflademarkører for levende cellesortering, er det muligt at skabe hECTs med definerede cellepopulationer. Mens markører for ikke-kardiale stromaceller har været tilgængelige i nogen tid, såsom det formodede fibroblast markør CD90 19,20, har overflademarkører af hjertemyocytter været vanskeligereat identificere. SIRPα var blandt de første kardiale overflademarkører identificeret for humane hjertemyocytter 18 og har vist sig at være yderst selektiv for hjertets afstamning. For nylig har vi fundet, at dobbelt-sortering for SIRPα + og CD90 celler giver næsten rene cardiomyocytter, med CD90 + population udviser en fibroblastlignende fænotype (Josowitz, upublicerede observationer). Baseret på disse indsamlede resultater, heri beskriver vi skabe hECTs anvendelse af en 3: 1 blanding af SIRPα + / CD90 cardiomyocytter og CD90 + fibroblaster.

Evnen til at konstruere en helt defineret menneske hjertevæv er afgørende ikke kun for at skabe robuste screening-værktøjer, men også for at udvikle modelsystemer til at undersøge nye celle- og genbaserede hjerte- behandlinger. Især talrige celleterapi til hjertesvigt, udnytte celletyper, herunder mesenchymstamceller (MSC) 21 </sup>, kardiale stamceller 22 og knoglemarvsceller mononukleære celler 23-25, er blevet testet i kliniske forsøg. Mens mange af de første resultater er lovende 21,23,25, den oprindelige ydelse ofte mindskes med tiden 26-29. En lignende udvikling er blevet rapporteret i murine manipuleret hjertevæv, som viser en betydelig funktionel fordel på grund af MSC tilskud, men fordelen er ikke opretholdes under langvarig kultur en. Underliggende sub-optimal ydeevne er vores begrænsede viden om de mekanismer, der styrer celleterapi. En dybere forståelse af, hvordan terapeutisk celler udøve deres gavnlige indflydelse, såvel som potentielle negative konsekvenser af myocyt-nonmyocyte interaktioner, ville muliggøre udviklingen af ​​bedre behandlinger giver klinisk signifikante og vedvarende fordele, med minimale bivirkninger, for patienter med hjertesvigt.

Her beskriver vi brugen af ​​definerede hECTs at interrogspiste mekanismer for celle-baseret behandling. Den kontrollerede væv sammensætning er afgørende for at identificere specifikke faktorer, der påvirker cardiomyocyte ydeevne. Direkte supplere hECTs med den terapeutiske celletype af interesse (f.eks MSC), kan afsløre virkningerne på hjertemyocyt ydeevne, som vi har vist i rotte ECTS 1.

Følgende multi-trins protokol begynder med rettet cardiac stamcelle differentiering, efterfulgt af fremstilling af multi-væv bioreaktor, og afsluttende med en beskrivelse af væv konstruktion og funktionel analyse. Vores eksperimenter udføres ved hjælp af NIH-godkendte H7 humane embryonale stamceller (embryonale) linje. Imidlertid har de følgende protokoller også blevet testet under anvendelse af en yderligere embryonale linje og tre induceret pluripotente stamcelle (hiPSC) linjer med lignende resultater. Vi har fundet, at effektiviteten i cardiomyocyte differentiering og succes i hek fabrikation kan være cellelinje afhængig, især for hiPSC linjer afledt af individuelle patienter. Ved at følge denne protokol, er to 6-brønds skåle belagt med i alt 1,68 mio hESCs (140.000 celler per brønd), hvilket giver ca. 2,5 millioner myocytter efter differentiering i 20 dage og sortering, nok til at gøre seks definerede væv.

Protocol

Bemærk: Udfør alle celle manipulationer i aseptiske betingelser ved hjælp af et HEPA-filtreret klasse II biologiske sikkerhed kabinet og sterilisere alle løsninger ved at filtrere dem gennem et 0,2 um filter. Udfør væv konstruktion og funktion test i enten den samme aseptiske betingelser eller en laminar flow hætte. 1. Såning af H7 hESCs i Forberedelse til Cardiac Differentiering (Dag 1) Forberedelse basalmembranen Matrix Tø 150 pi alikvot af embryonale kvalifice…

Representative Results

For at opnå hjertemyocytter, er en let modificeret version af Boheler og Lian differentiering metoder 30,31. Det er bydende nødvendigt, at differentieringen starter under log-fase af cellevækst, men også at startpopulationen er tilstrækkeligt konfluent at opnå et brugbart antal celler efter sortering (ca. 75% er optimalt). Typisk for H7 hESCs, udpladning med en tæthed på 140.000 hESCs pr brønd af en 6-brønds skål i væsentlig 8 medier og 5% CO2 inkubator holdt ved 37 ° C giver tilstræk…

Discussion

Konstruktion af definerede humane manipuleret hjertevæv (hek) kan give en mere konsekvent og pålidelig model af menneskets hjertemyocyt funktion. Kritisk, er alle cellulære og ekstracellulære komponenter i systemet kendt og kan manipuleres som ønsket, og dermed fjerne den confounding indflydelsen fra andre ukendte celletyper som følge af differentieringsprocessen. Til afbalancering hurtig cellevækst og højt udbytte, er det foretrukket, at differentieringen starter ved 75% sammenløb af hESCs, ideelt fire dage ef…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Dette arbejde blev støttet af NIH (1F30HL118923-01A1) til TJC, NIH / NHLBI PEN kontrakt HHSN268201000045C til KDC, forskningsbevillingen råd Hongkong TRS T13-706 / 11 (KDC), NIH (R01 HL113499) til BDG, den amerikanske heart Association (12PRE12060254) til RJ, og Research Grant Råd Hongkong (TBR'er, T13-706 / 11) til RL Yderligere finansiering blev givet til TJC af NIH DRB 5T32GM008553-18 og som et praktikophold på NIDCR-Tværfaglig uddannelse i systemer og Developmental Biologi og fødselsdefekter T32HD075735. Forfatterne ønsker også at takker Arthur Autz på The Zahn centrum af byen College of New York for at få hjælp med bearbejdning bioreaktoren og Mamdouh Eldaly til teknisk bistand. Vi takker også Dr. Kenneth Boheler for rådgivning om hjerte-differentiering, og Dr. Joshua Hare for generøst giver humane mesenkymale stamceller.

Materials

Cell Culture Company Catalog Number Comments
Amphotericin B Sigma-Aldrich A2411 Prepare a 2.5 mg/ml stock in DMSO and filter-sterilize
B27 with Insulin Life Technologies 17505055
B27 without Insulin Life Technologies A1895601
CHIR99021 Stemgent 04-0004 Create 6 μM stock, then aliquot and store at -20 °C.
Essential 8 Media Life Technologies A1517001
H7 Human Embryonic Stem Cells WiCell WA07
hESC Qualified Matrix, Corning Matrigel Corning 354277 Thaw on ice at 4 °C overnight then aliquot 150 μl into separate tubes and store at -20 °C.
IWR-1 Sigma-Aldrich I0161 Create 10 mM stock and aliquot. Store at -20 °C
Neonatal Calf Serum Life Technologies 16010159
Non-enzymatic Dissociation Reagent: Gentle Cell Dissociation Reagent Stem Cell Technologies 7174
Penicillin-Streptomycin Corning 30-002-CI
RPMI 1640 Life Technologies 11875-093 Keep refrigerated
Y-27632 (ROCK Inhibitor) Stemgent 04-0012 Resuspend to a 10 mM stock concentration, aliquot and store at -20 °C.  Avoid freeze thaw cycles.
Cell Sorting Company Catalog Number Comments
4’,6-Diamidino-2-Phenylindole, Dihydrochloride (DAPI) Life Technologies D1306
CD90-FITC BioLegend 328107
Enzymatic Dissociation Reagent: Cell Detach Kit I (0.04 % Trypsin/ 0.03% EDTA, Trypsin neutralization solution and Hanks Buffered Salt Solution)  PromoCell C-41200
Fetal Bovine Serum Atlanta Biologics S11250
SIRPα-PE/Cy7 BioLegend 323807
Tissue Construction Company Catalog Number Comments
0.25% Trypsin/0.1% EDTA Fisher Scientific 25-053-CI Optional: For collection of supplemental cells of interest
10x MEM Sigma-Aldrich M0275-100ML
10X PBS Packets Sigma-Aldrich P3813
Collagen, Bovine Type I Life Technologies A10644-01 Keep on ice
DMEM/F12 Life Technologies 11330057
Dulbecco’s Modified Eagles Medium (DMEM), High Glucose Sigma-Aldrich D5648
Polydimethylsiloxane (PDMS) Dow Corning Sylgard 184
Sodium HEPES Sigma-Aldrich H3784
Sodium Hydroxide Sigma-Aldrich 221465
Materials Company Catalog Number Comments
1.5 ml microcentrifuge tubes Fisher Scientific NC0536757
15 ml polyproylene centrifuge tube Corning 352096
5 ml Polystyrene Round-Bottom Tube Corning 352235 With integrated 35 μm cell strainer
50 ml polyproylene centrifuge tube Corning 352070
6-well flat bottom tissue-culture treated plate Corning 353046
Cell Scraper, Disposable Biologix 70-2180
Polysulfone McMaster-Carr
Polytetrafluoroethylene (Teflon) McMaster-Carr
Equipment Company Catalog Number Comments
Dissecting Microscope Olympus SZ-61 Or similar, must have a mount for the high speed camera to attach
Electrical Pacing System Astro-Med, Inc Grass S88X Stimulator
High Speed Camera Pixelink PL-B741U Or similar, but must be capable of 100 frames per second for accurate data acquisition
Plate Temperature Control Used to maintain media temperature during data acqusition.
Custom Materials Company Catalog Number Comments
LabView Post-tracking Program available upon request from the authors

References

  1. Serrao, G. W., et al. Myocyte-depleted engineered cardiac tissues support therapeutic potential of mesenchymal stem cells. Tissue Eng. Part A. 18 (13-14), 1322-1333 (2012).
  2. Hansen, A., et al. Development of a drug screening platform based on engineered heart tissue. Circ. Res. 107 (1), 35-44 (2010).
  3. Fink, C., Ergün, S., Kralisch, D., Remmers, U., Weil, J., Eschenhagen, T. Chronic stretch of engineered heart tissue induces hypertrophy and functional improvement. FASEB J. 14 (5), 669-679 (2000).
  4. Yildirim, Y., et al. Development of a biological ventricular assist device: preliminary data from a small animal model. Circulation. 116, 16-23 (2007).
  5. Sekine, H., et al. Cardiac Cell Sheet Transplantation Improves Damaged Heart Function via Superior Cell Survival in Comparison with Dissociated Cell Injection. Tissue Eng. Part A. 17 (23-24), 2973-2980 (2011).
  6. Lesman, A., et al. Transplantation of a tissue-engineered human vascularized cardiac muscle. Tissue Eng. Part A. 16 (1), 115-125 (2010).
  7. Turnbull, I. C., et al. Advancing functional engineered cardiac tissues toward a preclinical model of human myocardium. FASEB J. 28 (2), 644-654 (2014).
  8. Thavandiran, N., Dubois, N., et al. Design and formulation of functional pluripotent stem cell-derived cardiac microtissues. Proc. Natl. Acad. Sci. U. S. A. 110 (49), 4698-4707 (2013).
  9. Schaaf, S., et al. Human engineered heart tissue as a versatile tool in basic research and preclinical toxicology. PloS One. 6 (10), e26397 (2011).
  10. Tulloch, N. L., et al. Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ. Res. 109 (1), 47-59 (2011).
  11. Nunes, S. S., et al. Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nature Methods. 10 (8), 781-787 (2013).
  12. Ma, Z., et al. Three-dimensional filamentous human diseased cardiac tissue model. Biomaterials. 35 (5), 1367-1377 (2014).
  13. Baker, B. M., Chen, C. S. Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues. J. Cell Sci. 125 (13), 3015-3024 (2012).
  14. Pontes Soares, C., Midlej, V., de Oliveira, M. E. W., Benchimol, M., Costa, M. L., Mermelstein, C. 2D and 3D-organized cardiac cells shows differences in cellular morphology, adhesion junctions, presence of myofibrils and protein expression. PloS One. 7 (5), e38147 (2012).
  15. Burridge, P. W., Keller, G., Gold, J. D., Wu, J. C. Production of De Novo Cardiomyocytes: Human Pluripotent Stem Cell Differentiation and Direct Reprogramming. Cell Stem Cell. 10 (1), 16-28 (2012).
  16. Mummery, C. L., Zhang, J., Ng, E. S., Elliott, D. A., Elefanty, A. G., Kamp, T. J. Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. Circ. Res. 111 (3), 344-358 (2012).
  17. Kim, C., et al. Non-cardiomyocytes influence the electrophysiological maturation of human embryonic stem cell-derived cardiomyocytes during differentiation. Stem Cells Dev. 19 (6), 783-795 (2010).
  18. Dubois, N. C., et al. SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nature Biotechnol. 29 (11), 1011-1018 (2011).
  19. Hudon-David, F., Bouzeghrane, F., Couture, P., Thibault, G. Thy-1 expression by cardiac fibroblasts: lack of association with myofibroblast contractile markers. J. Mol. Cell. Cardiol. 42 (5), 991-1000 (2007).
  20. Gago-Lopez, N., et al. THY-1 receptor expression differentiates cardiosphere-derived cells with divergent cardiogenic differentiation potential. Stem Cell Reports. 2 (5), 576-591 (2014).
  21. Hare, J. M., Traverse, J. H., et al. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J. Am. Coll. Cardiol. 54 (24), 2277-2286 (2009).
  22. Bolli, R., et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet. 378 (9806), 1847-1857 (2011).
  23. Wollert, K. C., et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet. 364 (9429), 141-148 (2004).
  24. Hirsch, A., et al. Intracoronary infusion of autologous mononuclear bone marrow cells or peripheral mononuclear blood cells after primary percutaneous coronary intervention: rationale and design of the HEBE trial–a prospective, multicenter, randomized trial. Am. Heart. J. 152 (3), 434-441 (2006).
  25. Jeevanantham, V., Butler, M., Saad, A., Abdel-Latif, A., Zuba-Surma, E. K., Dawn, B. Adult bone marrow cell therapy improves survival and induces long-term improvement in cardiac parameters: a systematic review and meta-analysis. Circulation. 126 (5), 551-568 (2012).
  26. Meyer, G. P., et al. Intracoronary bone marrow cell transfer after myocardial infarction: 5-year follow-up from the randomized-controlled BOOST trial. Eur. Heart J. 30 (24), 2978-2984 (2009).
  27. Meyer, G. P., et al. Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months’ follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation. 113 (10), 1287-1294 (2006).
  28. Hirsch, A., et al. Intracoronary infusion of mononuclear cells from bone marrow or peripheral blood compared with standard therapy in patients after acute myocardial infarction treated by primary percutaneous coronary intervention: results of the randomized controlled HEBE trial. Eur. Heart J. 32 (14), 1736-1747 (2011).
  29. Simari, R. D., et al. Bone marrow mononuclear cell therapy for acute myocardial infarction: a perspective from the cardiovascular cell therapy research network. Circ. Res. 114 (10), 1564-1568 (2014).
  30. Bhattacharya, S., et al. High efficiency differentiation of human pluripotent stem cells to cardiomyocytes and characterization by flow cytometry. J. Vis. Exp. (91), e52010 (2014).
  31. Lian, X., et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc. Natl. Acad. Sci. U. S. A. 109 (27), 1848-1857 (2012).
  32. Burridge, P. W., et al. A universal system for highly efficient cardiac differentiation of human induced pluripotent stem cells that eliminates interline variability. PloS One. 6 (4), e18293 (2011).
  33. Kean, T. J., Lin, P., Caplan, A. I., Dennis, J. E. MSCs: Delivery Routes and Engraftment, Cell-Targeting Strategies, and Immune Modulation. Stem Cells Int. , 732742 (2013).
  34. Trachtenberg, B., et al. Rationale and design of the Transendocardial Injection of Autologous Human Cells (bone marrow or mesenchymal) in Chronic Ischemic Left Ventricular Dysfunction and Heart Failure Secondary to Myocardial Infarction (TAC-HFT) trial: A randomized, double-blind, placebo-controlled study of safety and efficacy. Am. Heart J. 161 (3), 487-493 (2011).
  35. Williams, A. R., et al. Intramyocardial stem cell injection in patients with ischemic cardiomyopathy: functional recovery and reverse remodeling. Circ. Res. 108 (7), 792-796 (2011).
  36. Razeghi, P., Young, M. E., Alcorn, J. L., Moravec, C. S., Frazier, O. H., Taegtmeyer, H. Metabolic gene expression in fetal and failing human heart. Circulation. 104 (24), 2923-2931 (2001).
  37. Rajabi, M., Kassiotis, C., Razeghi, P., Taegtmeyer, H. Return to the fetal gene program protects the stressed heart: a strong hypothesis. Heart Fail. Rev. 12 (3-4), 331-343 (2007).
  38. Taegtmeyer, H., Sen, S., Vela, D. Return to the fetal gene program: a suggested metabolic link to gene expression in the heart. Ann. N. Y. Acad. Sci. 1188, 191-198 (2010).
check_url/fr/53447?article_type=t

Play Video

Citer Cet Article
Cashman, T. J., Josowitz, R., Gelb, B. D., Li, R. A., Dubois, N. C., Costa, K. D. Construction of Defined Human Engineered Cardiac Tissues to Study Mechanisms of Cardiac Cell Therapy. J. Vis. Exp. (109), e53447, doi:10.3791/53447 (2016).

View Video