Summary

Udarbejdelse af termoresponsiv nanostrukturerede overflader for Tissue Engineering

Published: March 01, 2016
doi:

Summary

Nanoscaled sea-island surfaces composed of thermoresponsive block copolymers were fabricated by the Langmuir-Schaefer method for controlling spontaneous cell adhesion and detachment. Both the preparation of the surface and the adhesion and detachment of cells on the surface were visualized.

Abstract

Thermoresponsive poly(N-isopropylacrylamide) (PIPAAm)-immobilized surfaces for controlling cell adhesion and detachment were fabricated by the Langmuir-Schaefer method. Amphiphilic block copolymers composed of polystyrene and PIPAAm (St-IPAAms) were synthesized by reversible addition-fragmentation chain transfer (RAFT) radical polymerization. A chloroform solution of St-IPAAm molecules was gently dropped into a Langmuir-trough apparatus, and both barriers of the apparatus were moved horizontally to compress the film to regulate its density. Then, the St-IPAAm Langmuir film was horizontally transferred onto a hydrophobically modified glass substrate by a surface-fixed device. Atomic force microscopy images clearly revealed nanoscale sea-island structures on the surface. The strength, rate, and quality of cell adhesion and detachment on the prepared surface were modulated by changes in temperature across the lower critical solution temperature range of PIPAAm molecules. In addition, a two-dimensional cell structure (cell sheet) was successfully recovered on the optimized surfaces. These unique PIPAAm surfaces may be useful for controlling the strength of cell adhesion and detachment.

Introduction

Nanostrukturerede overflader har for nylig tiltrukket betydelig opmærksomhed på grund af deres forskellige anvendelsesmuligheder, herunder mønster, cellekultur, rengøring, og overflade skift. For eksempel superhydrophobic overflader inspireret af nanostruktur af lotus blade og andre responsive overflader er i stand til at reagere på ydre stimuli 1-4.

Langmuir film er en af ​​de mest undersøgte polymerovertræk. En Langmuir film dannes ved at dryppe amfifile molekyler på en luft-vand grænsefladen 5-8. Filmen kan derefter overføres på en fast overflade ved fysisk eller kemisk adsorption, og den molekylære konformation på en fast overflade kan styres ved hjælp vertikale og horisontale overførselsmetoder 9-12. Densiteten af ​​Langmuir film kan styres nøjagtigt ved at komprimere luft-vand-grænsefladen. For nylig er denne metode også vist sig effektiv til fremstilling nanoskalerede sea-island struktues ved at udnytte amfifile blokcopolymerer. Nanostrukturer antages at bestå af en kerne af hydrofobe segmenter og en skal af hydrofile segmenter 13-17. Desuden er antallet af nanostrukturer på en overflade reguleres ved at styre det areal pr molekyle (A m) af blokcopolymeren ved grænsefladen.

Vi har fokuseret på en original, unik stillads-fri vævsmanipulering tilgang, cellelaget teknik, ved anvendelse af en temperaturfølsom kultur overflade. Den udviklede teknologi er blevet anvendt på regenerative behandlinger for forskellige organer 18. En temperatur-responsive kultur overflade blev fremstillet ved podning af poly (N -isopropylacrylamide) (PIPAAm), en temperaturfølsom molekyle, på en overflade 19-27. PIPAAm og dets copolymerer udviser en lavere kritisk opløsningstemperatur (LCST) i vandige medier ved temperaturer nær 32 ° C. Kulturen overflade udviste også en temperaturfølsom alternati på mellem hydrofobicitet og hydrofilicitet. Ved 37 ° C, den PIPAAm-transplanterede overflade blev hydrofob, og cellerne let fastgøres og prolifererede på overfladen såvel som på konventionel vævskulturpolystyren. Når temperaturen blev sænket til 20 ° C, overfladen blev hydrofil, og cellerne spontant løsrevet fra overfladen. Derfor kunne dyrkede sammenflydende celler på overfladen høstes som et intakt ark ved at ændre temperaturen. Disse celleadhæsion og udstationeringsprocedurer egenskaber blev også vist ved en overflade fremstillet ved Langmuir filmcoating til laboratorie- demonstration 26, 27. En Langmuir film af blokcopolymerer bestående af polystyren (P (St)) og PIPAAm (St-IPAAm) blev fremstillet. Langmuir film med en specifik A m kunne horisontalt overført til en hydrofobisk modificeret glassubstrat. Desuden blev celleadhæsion på og adskillelse fra den forberedte overflade i afhængighed af temperatur evalueres.

_content "> Her beskriver vi protokoller til fremstilling af en nanostrukturerede Langmuir film bestående af termo-responsive amfifile blokcopolymerer på et glas substrat. Vores metode kan give en effektiv fabrikation teknik til økologiske nanofilms i forskellige områder af overfladen videnskab og kan lette mere effektiv kontrol af celleadhæsion på og spontan frigørelse fra en overflade.

Protocol

1. Syntese af Polystyrene- blok-poly (N -isopropylacrylamide) ved To trin Vendbar Addition-fragmentering Chain Transfer (FLÅDE) Radikal polymerisation Opløs styren (153,6 mmol), 4-cyano-4- (ethylsulfanylthiocarbonyl) sulfanylpentanoic acid (ECT; 0,2 mmol) og 4,4'-azobis (4-cyanovalerianesyre) (ACVA; 0,04 mmol) i 40 ml 1, 4-dioxan. Frys opløsningen i flydende nitrogen under vakuum i 15-20 minutter til fjernelse af de reaktive species og gradvist tø op ved stuetemperatur. Sørg for, at…

Representative Results

Blokcopolymerer sammensat af polystyren og poly (N -isopropylacrylamide) (St-IPAAms) med specifikke molekylvægte blev syntetiseret ved RAFT radikalpolymerisation. ECT blev fremstillet som et kædeoverførselsmiddel som beskrevet i Moad et al. 28. To St-IPAAm molekyler af forskellige PIPAAm kædelængder blev syntetiseret, og de ​​opnåede blok-polymerer blev karakteriseret ved 1H kernemagnetisk resonans (NMR) og gelpermeationschromatografi (GP…

Discussion

En temperatur-responsive overflade blev fremstillet ved Langmuir-Schaefer metoden, og overfladeegenskaberne for celleadhæsion / løsgørelse og cellelaget recovery blev optimeret. Når denne metode anvendes til fremstilling af overflader, adskillige trin er kritiske. Den molekylære sammensætning af St-IPAAm molekyler har en stor effekt på overfladen struktur og stabilitet af overfladen, og i forlængelse heraf, om celleadhæsion og løsrivelse. Navnlig bør de St-IPAAm molekyler har en snæver molekylvægtsfordeling…

Divulgations

The authors have nothing to disclose.

Acknowledgements

This study was financially supported by the Creation of Innovation Centers for Advanced Interdisciplinary Research Program’s Project for Developing Innovation Systems “Cell Sheet Tissue Engineering Center (CSTEC)” of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Materials

N-isopropylacrylamide Kohjin No catalog number
Azobis(4-cyanovaleric acid) Wako Pure Chemicals 016-19332
Styrene Sigma-Aldrich S4972
1,3,5-trioxane Sigma-Aldrich T81108
1,4-Dioxane Wako Pure Chemicals 045-24491
DMEM Sigma  D6429
PBS Nakarai 11482-15
Streptomycin GIBCO BRL 15140-163
Penicillin GIBCO BRL 15140-122
Trypsin-EDTA Sigma T4174
FBS Japan Bioserum JBS-11501
BAECs Health Science Reserch Resources Bank JCRB0099
Cover Glasses Matsunami Glass Industry C024501
AFM NanoScope V Veeco
1H NMR INOVA 400 Varian, Palo Alto
ATR/FT-IR NICOLET 6700 Thermo Scientific
GPC HLC-8320GPC Tosoh
TSKgel Super AW2500, AW3000, AW4000 Tosoh
Langmuir-Blodgett Deposition Troughs  KSV Instruments KN 2002 KSV NIWA Midium trough
Nikon ECLIPSE TE2000-U Nikon

References

  1. Bae, Y. H., Kwon, I. C., Pai, C. M., Kim, S. W. Controlled release of macromolecules from electrical and chemical stimuli-responsive hydrogels. Makromol. Chem., Macromol. Symp. 70-71 (1), 173-181 (1993).
  2. Fu, Q., et al. Reversible control of free energy and topography of nanostructured surfaces. J. Am. Chem. Soc. 126 (29), 8904-8905 (2004).
  3. Nykanen, A., et al. Phase behavior and temperature-responsive molecular filters based on self-assembly of polystyrene-block-poly(N-isopropylacrylamide)-block-polystyrene. Macromolecules. 40 (16), 5827-5834 (2007).
  4. Sun, T., et al. Reversible switching between superhydrophilicity and superhydrophobicity. Angew. Chem. Int. Ed. Engl. 43 (3), 357-360 (2004).
  5. Shuler, R. L., Zisman, W. A. A Study of the behavior of Polyoxyethylene at the air-water interface by wave damping and other methods. J. Phys. Chem. 74 (7), 1523-1534 (1970).
  6. Kawaguchi, M., Sauer, B. B., Yu, H. Polymeric monolayer dynamics at the air/water interface by surface light scattering. Macromolecules. 22 (4), 1735-1743 (1989).
  7. Saito, W., Kawaguchi, M., Kato, T., Imae, T. Spreading solvent and temperature effects on interfacial properties of Poly (N-isopropylacrylamide) films at the air-water interface. Langmuir. 7463 (11), 5947-5950 (1996).
  8. Jheng, K. T., Hsu, W. P. Molecular weight effect of PMMA on its miscibility with PS-b-PEO at the air/water interface. J. App. Polym. Sci. 125 (3), 1986-1992 (2012).
  9. Biesalski, M. A., Knaebel, A., Tu, R., Tirrell, M. Cell adhesion on a polymerized peptide-amphiphile monolayer. Biomaterials. 27 (8), 1259-1269 (2006).
  10. Da Silva, A. M. P. S. G., Lopes, S. I. C., Brogueira, P., Prazeres, T. J. V., Beija, M., Martinho, J. M. G. Thermo-responsiveness of poly(N,N-diethylacrylamide) polymers at the air-water interface: The effect of a hydrophobic block. Journal of colloid interface sci. 327 (1), 129-137 (2008).
  11. Wang, S. Q., Zhu, Y. X. Facile method to prepare smooth and homogeneous polymer brush surfaces of varied brush thickness and grafting density. Langmuir. 25 (23), 13448-13455 (2009).
  12. Estillore, N. C., Park, J. Y., Advincula, R. C. Langmuir−Schaefer (LS) macroinitiator film control on the grafting of a thermosensitive polymer brush via surface initiated-ATRP. Macromolecules. 43 (16), 6588-6598 (2010).
  13. Seo, Y. S., et al. Nanowire and mesh conformations of diblock copolymer blends at the air/water interface. Nano Lett. 4 (3), 483-486 (2004).
  14. Lu, Q., Bazuin, C. G. Solvent-assisted formation of nanostrand networks from supramolecular diblock copolymer/surfactant complexes at the air/water interface. Nano lett. 5 (7), 1309-1314 (2005).
  15. Nagano, S., Matsushita, Y., Ohnuma, Y., Shinma, S., Seki, T. Formation of a highly ordered dot array of surface micelles of a block copolymer via liquid crystal-hybridized self-assembly. Langmuir. 22 (12), 5233-5236 (2006).
  16. Perepichka, I. I., Borozenko, K., Badia, A., Bazuin, C. G. Pressure-induced order transition in nanodot-forming diblock. J. Am. Chem. Soc. 133 (493), 19702-19705 (2011).
  17. Wang, X. L., Ma, X. Y., Zang, D. Y. Aggregation behavior of polystyrene-b-poly(acrylicacid) at the air-water interface. Soft Matter. 9 (2), 443-453 (2013).
  18. Yamato, M., Okano, T. Cell sheet engineering. Mater. Today. 7 (5), 42-47 (2004).
  19. Rollason, G., Daviest, J. E., Sefton, M. V. Preliminary report on cell culture on a thermally reversible copolymer. Biomaterials. 14 (2), 153-155 (1993).
  20. Park, Y. S., Ito, Y., Imanishi, Y. Permeation control through porous membranes immobilized with thermosensitive polymer. Langmuir. 14 (4), 910-914 (1998).
  21. Kwon, O. H., Kikuchi, A., Yamato, M., Okano, T. Accelerated cell sheet recovery by co-grafting of PEG with PIPAAm onto porous cell culture membranes. Biomaterials. 24 (7), 1223-1232 (2003).
  22. Kikuchi, A., Okano, T. Nanostructured designs of biomedical materials: applications of cell sheet engineering to functional regenerative tissues and organs. J. Control. Release. 101 (1-3), 69-84 (2005).
  23. Fukumori, K., et al. Characterization of ultra-thin temperature-responsive polymer layer and its polymer thickness dependency on cell attachment/detachment properties. Macromol. biosci. 10 (10), 1117-1129 (2010).
  24. Takahashi, H., Nakayama, M., Yamato, M., Okano, T. Controlled chain length and graft density of thermoresponsive polymer brushes for optimizing cell sheet harvest. Biomacromolecules. 11 (8), 1991-1999 (2010).
  25. Nakayama, M., Yamada, N., Kumashiro, Y., Kanazawa, H., Yamato, M., Okano, T. Thermoresponsive poly(N-isopropylacrylamide)-based block copolymer coating for optimizing cell sheet fabrication. Macromol. Biosci. 12 (6), 751-760 (2012).
  26. Sakuma, M., et al. Control of cell adhesion and detachment on Langmuir-Schaefer surface composed of dodecyl-terminated thermo-responsive polymers. J. Biomater. Sci., Polym. Ed. 25 (5), 431-443 (2014).
  27. Sakuma, M., et al. Thermoresponsive nanostructured surfaces generated by the Langmuir-Schaefer method are suitable for cell sheet fabrication. Biomacromolecules. 15 (11), 4160-4167 (2014).
  28. Moad, G., Chong, Y. K., Postma, A., Rizzardo, E., Thang, S. H. Advances in RAFT polymerization: the synthesis of polymers with defined end-groups. Polymer. 46 (19), 8458-8468 (2005).
  29. Nishida, K., et al. Corneal Reconstruction with Tissue-Engineered Cell Sheets Composed of Autologous Oral Mucosal Epithelium. N. Engl. J. Med. 351 (12), 1187-1196 (2004).
  30. Ohki, T., et al. Prevention of esophageal stricture after endoscopic submucosal dissection using tissue-engineered cell sheets. Gastroenterology. 143 (3), 582-588 (2012).
  31. Sawa, Y., et al. Tissue engineered myoblast sheets improved cardiac function sufficiently to discontinue LVAS in a patient with DCM: report of a case. Surg. Today. 42 (2), 181-184 (2012).
check_url/fr/53465?article_type=t

Play Video

Citer Cet Article
Sakuma, M., Kumashiro, Y., Nakayama, M., Tanaka, N., Haraguchi, Y., Umemura, K., Shimizu, T., Yamato, M., Okano, T. Preparation of Thermoresponsive Nanostructured Surfaces for Tissue Engineering. J. Vis. Exp. (109), e53465, doi:10.3791/53465 (2016).

View Video