Summary

مثلي هند الاطراف زرع في ماوس

Published: February 12, 2016
doi:

Summary

هذا النموذج رواية للهند مثلي زرع الأطراف الاصطناعية في الماوس، وتطبيق تقنية صفعة غير خياطة لمفاغرة فائقة الاوعية الدموية الدقيقة، ويوفر أداة قوية لفي الجسم الحي الأبحاث المناعية الآلية المتعلقة زرع الطعم الخيفي مركب أوعية دموية (VCA).

Abstract

In vivo animal model systems, and in particular mouse models, have evolved into powerful and versatile scientific tools indispensable to basic and translational research in the field of transplantation medicine. A vast array of reagents is available exclusively in this setting, including mono- and polyclonal antibodies for both diagnostic and interventional applications. In addition, a vast number of genotyped, inbred, transgenic, and knock out strains allow detailed investigation of the individual contributions of humoral and cellular components to the complex interplay of an immune response and make the mouse the gold standard for immunological research.

Vascularized Composite Allotransplantation (VCA) delineates a novel field of transplantation using allografts to replace “like with like” in patients suffering traumatic or congenital tissue loss. This surgical methodological protocol shows the use of a non-suture cuff technique for super-microvascular anastomosis in an orthotopic mouse hind limb transplantation model. The model specifically allows for comparison between established paradigms in solid organ transplantation with a novel form of transplants consisting of various different tissue components. Uniquely, this model allows for the transplantation of a viable vascularized bone marrow compartment and niche that have the potential to exert a beneficial effect on the balance of immune acceptance and rejection. This technique provides a tool to investigate alloantigen recognition and allograft rejection and acceptance, as well as enables the pursuit of functional nerve regeneration studies to further advance this novel field of transplantation.

Introduction

The late nineties heralded the pioneering days of reconstructive transplantation with the first successful hand transplant performed in France in 1998. Since then, the use of VCAs for reconstruction of devastating tissue defects has been successfully employed in a wide spectrum of patients. To date, the world counts 76 recipients of 112 upper extremities as well as 31 faces 1-3. In addition, several other types of VCAs such as abdominal wall 4, larynx 5, trachea 6, vascularized joints 7, and even penis 8 have been performed. Furthermore, the live birth of a baby was recently reported after uterus transplantation 9. This growing world experience is indicative for how reconstructive transplantation has become a valid therapeutic option for patients suffering of significant functional tissue defects not amendable to conventional reconstructive and restorative surgery and treatment.

While the idea of replacing “like with like” sparked clinical enthusiasm, initial skepticism still prevails with regards to side effects of conventional high-dose immunosuppression required to maintain allografts and their function 10,11. However, as shown by seminal work of Lee et al., these composite grafts are less likely to reject than its individual components, and furthermore, some of the tissue components such as the vascularized bone compartment have fueled optimism as they might exert unique immunological effects onto the balance of immune acceptance and rejection 12.

Our group pioneered several microsurgical animal models for solid organ transplantation, as well as vascularized composite allotransplantation 13-19. Here we describe a novel surgical procedure using a non-suture cuff technique to perform super micro-vascular anastomosis in an orthotopic mouse hind limb transplantation model. This transplant model provides a useful tool for investigating immune acceptance and rejection mechanisms, as well as the role of individual tissue components, such as the vascularized bone marrow compartment, towards tolerance induction in the immunologically versatile setting of the mouse species. Additionally, the orthotopic placement of the limb opens the possibilities for nerve regeneration and functional outcome studies, which are critically important to the setting of VCA.

Protocol

وأجريت جميع التجارب وفقا لدليل لرعاية واستخدام الحيوانات المختبرية من المعهد الوطني للصحة (NIH) وتمت الموافقة من قبل لجنة جامعة جونز هوبكنز رعاية الحيوان واستخدام (JHUACUC). تم تنفيذ إجراءات محددة في إطار MO13M108 بروتوكول ACUC المعتمدة. عملية 1. المانح?…

Representative Results

أداء زرع الطعم الخيفي مركب أوعية دموية في نموذج الفأر باستخدام تقنية غير خياطة صفعة يسمح لتحقيق ممتازة وطويلة الكسب غير المشروع المدى والحيوان البقاء على قيد الحياة كما هو مبين في الشكل 1. وعلاوة على ذلك، لأنها تمثل وسيلة يمكن الاعتماد علي?…

Discussion

أوعية دموية المركب زرع الطعم الخيفي، مثل الطرف العلوي وزرع وجه لإعادة الإعمار من العيوب الأنسجة المدمرة، وقد تطورت كخيار علاجي صالحة لمرضى لا قابلة للتعديل للإجراءات التجميلية التقليدية. التقدم التقني في مجال جراحة الترميمية فضلا عن خبرة واسعة مع مناعة قوية والعلا…

Divulgations

The authors have nothing to disclose.

Acknowledgements

وأيد هذا العمل من قبل الجيش والبحرية والمعاهد الوطنية للصحة، والقوات الجوية، VA والشئون الصحية لدعم جهود AFIRM الثاني، تحت رقم جائزة W81XWH-13-2-0053. الجيش الأمريكي للبحوث الطبية اقتناء آخر، 820 شارع تشاندلر، فورت ديتريك MD 21702-5014 هو منح وإدارة المكاتب الاستحواذ. الآراء والتفسيرات والاستنتاجات والتوصيات هي آراء الكاتب ولا أيدت بالضرورة من قبل وزارة الدفاع.

فإن الكتاب أود أن أشكر جيسيكا العزي، طبيب بيطري، كارولين غاريت، طبيب بيطري وجولي واتسون، طبيب بيطري لدعم البيطري الممتاز خلال هذه الدراسة.

Materials

Suture, 6-0 Nylon MWI 31849
Suture, 6-0 Polysorb MWI 72667
Suture, 10-0 Nylon Aero Surgical TK-107038
Polyimide Tubing, Size 25 Vention Medical 141-0023
Polyimide Tubing, Size 27 Vention Medical 141-0015
Microvascular Clamps (Single) Synovis 00396
Microvascular Clamps (Double) Synovis 00414
Micro-Scissors Synovis SAS-18
Micro-Forceps Synovis FRS-15 RM-8
Micro-Dilators Synovis FRS-15 RM-8d.1
Micro-Needledriver Synovis C-14
Micro-Clamp Applicator Synovis CAF-4
Micro-Flushing Needle Hamilton N/A 10MM, 30°, 33G
Lactated Ringers Solution Fisher Scientific NC9968051
Buprenorphine N/A N/A DEA Number required; Obtained from hosptial pharmacy.
Enrofloxacin; Baytril Bayer Health Care 186599
Heparin N/A N/A Obtained from hosptial pharmacy

References

  1. Khalifian, S., et al. Facial transplantation: the first 9 years. Lancet. , (2014).
  2. Petruzzo, P., Dubernard, J. M. The International Registry on Hand and Composite Tissue allotransplantation. Clin. Transpl. , 247-253 (2011).
  3. Shores, J. T., Brandacher, G., Lee, W. A. Hand and Upper Extremity Transplantation: An Update of Outcomes in the Worldwide Experience. Plast. Reconstr. Surg. , (2014).
  4. Levi, D. M., et al. Transplantation of the abdominal wall. Lancet. 361, 2173-2176 (2003).
  5. Strome, M., et al. Laryngeal transplantation and 40-month follow-up. N.Engl.J. Med. 344, 1676-1679 (2001).
  6. Rose, K. G., Sesterhenn, K., Wustrow, F. Tracheal allotransplantation in man. Lancet. 1, 433 (1979).
  7. Hofmann, G. O., et al. Allogeneic vascularized transplantation of human femoral diaphyses and total knee joints–first clinical experiences. Transplant. Proc. 30, 2754-2761 (1998).
  8. Hu, W., et al. A preliminary report of penile transplantation. Eur. Urol. 50, 851-853 (2006).
  9. Brannstrom, M., et al. Livebirth after uterus transplantation. Lancet. , (2014).
  10. Sarhane, K. A., et al. Diagnosing skin rejection in vascularized composite allotransplantation: advances and challenges. Clin. Transplant. 28, 277-285 (2014).
  11. Schneeberger, S., Khalifian, S., Brandacher, G. Immunosuppression and monitoring of rejection in hand transplantation. Tech. Hand Up. Extrem. Surg. 17, 208-214 (2013).
  12. Lee, W. P., et al. Relative antigenicity of components of a vascularized limb allograft. Plast. Reconstr. Surg. 87, 401-411 (1991).
  13. Sucher, R., et al. Hemiface allotransplantation in the mouse. Plast. Reconstr. Surg. 129, 867-870 (2012).
  14. Ibrahim, Z., et al. A modified heterotopic swine hind limb transplant model for translational vascularized composite allotransplantation (VCA) research. J Vis Exp. , (2013).
  15. Oberhuber, R., et al. Murine cervical heart transplantation model using a modified cuff technique. J Vis Exp. , (2014).
  16. Sucher, R., et al. Mouse hind limb transplantation: a new composite tissue allotransplantation model using nonsuture supermicrosurgery. Transplantation. 90, 1374-1380 (2010).
  17. Maglione, M., et al. A novel technique for heterotopic vascularized pancreas transplantation in mice to assess ischemia reperfusion injury and graft pancreatitis. Surgery. 141, 682-689 (2007).
  18. Sucher, R., et al. Orthotopic hind-limb transplantation in rats. J Vis Exp. , (2010).
  19. Zou, Y., Brandacher, G., Margreiter, R., Steurer, W. Cervical heterotopic arterialized liver transplantation in the mouse. J. Surg. Res. 93, 97-100 (2000).
  20. Zhang, F., et al. Development of a mouse limb transplantation model. Microsurgery. 19, 209-213 (1999).
  21. Schneeberger, S., et al. Upper-extremity transplantation using a cell-based protocol to minimize immunosuppression. Ann. Surg. 257, 345-351 (2013).
  22. Azari, K., Brandacher, G. Vascularized composite allotransplantation. Curr Opin Organ Transplant. 18, 631-632 (2013).
  23. Pomahac, B., Gobble, R. M., Schneeberger, S. Facial and hand allotransplantation. Cold Spring Harb. Perspect. Med. 4, (2014).
  24. Chong, A. S., Alegre, M. L., Miller, M. L., Fairchild, R. L. Lessons and limits of mouse models. Cold Spring Harb. Perspect. Med. 3, a015495 (2013).
  25. Lin, C. H., et al. The neck as a preferred recipient site for vascularized composite allotransplantation in the mouse. Plast. Reconstr. Surg. 133, 133e-141e (2014).
  26. Shapiro, R. I., Cerra, F. B. A model for reimplantation and transplantation of a complex organ: the rat hind limb. J. Surg. Res. 24, 501-506 (1978).
  27. Leto Barone, A. A., et al. The gracilis myocutaneous free flap in swine: an advantageous preclinical model for vascularized composite allograft transplantation research. Microsurgery. 33, 51-55 (2013).
  28. Mathes, D. W., et al. A preclinical canine model for composite tissue transplantation. J. Reconstr. Microsurg. 26, 201-207 (2010).
  29. Barth, R. N., et al. Prolonged survival of composite facial allografts in non-human primates associated with posttransplant lymphoproliferative disorder. Transplantation. 88, 1242-1250 (2009).
  30. Brandacher, G., Grahammer, J., Sucher, R., Lee, W. P. Animal models for basic and translational research in reconstructive transplantation. Birth Defects Res C Embryo Today. 96, 39-50 (2012).
  31. Foster, R. D., Liu, T. Orthotopic hindlimb transplantation in the mouse. J. Reconstr. Microsurg. 19, 49 (2002).
  32. Tung, T. H., Mohanakumar, T., Mackinnon, S. E. Development of a Mouse Model for Heterotopic Limb and Composite-Tissue Transplantation. J. Reconstr. Microsurg. 17, 267-274 (2001).
  33. Zhang, F., Shi, D. Y., Kryger, Z., Moon, W. Development of a mouse limb transplantation model. Microsurgery. 19 (5), 209-213 (1999).
  34. Schneeberger, S., et al. Atypical acute rejection after hand transplantation. Am. J. Transplant. 8, 688-696 (2008).
  35. Mathes, D. W., et al. Stable mixed hematopoietic chimerism permits tolerance of vascularized composite allografts across a full major histocompatibility mismatch in swine. Transpl. Int. 27, 1086-1096 (2014).
  36. Yamada, Y., et al. Use of CTLA4Ig for induction of mixed chimerism and renal allograft tolerance in nonhuman primates. Am. J. Transplant. 14, 2704-2712 (2014).
  37. Sachs, D. H., Kawai, T., Sykes, M. Induction of tolerance through mixed chimerism. Cold Spring Harb. Perspect. Med. 4, a015529 (2014).
  38. Kawai, T., et al. HLA-mismatched renal transplantation without maintenance immunosuppression. N. Engl. J. Med. 358, 353-361 (2008).
  39. Kawai, T., Sachs, D. H. Tolerance induction: hematopoietic chimerism. Curr Opin Organ Transplant. 18, 402-407 (2013).
  40. Kawai, T., Sachs, D. H., Sykes, M., Cosimi, A. .. B. HLA-mismatched renal transplantation without maintenance immunosuppression. N. Engl. J. Med. 368, 1850-1852 (2013).
  41. Leventhal, J., et al. Chimerism and tolerance without GVHD or engraftment syndrome in HLA-mismatched combined kidney and hematopoietic stem cell transplantation. Sci. Transl. Med. 4, 124-128 (2012).
  42. Cendales, L. C., et al. The Banff 2007 working classification of skin-containing composite tissue allograft pathology. Am. J. Transplant. 8, 1396-1400 (2008).
check_url/fr/53483?article_type=t

Play Video

Citer Cet Article
Furtmüller, G. J., Oh, B., Grahammer, J., Lin, C., Sucher, R., Fryer, M. L., Raimondi, G., Lee, W. A., Brandacher, G. Orthotopic Hind Limb Transplantation in the Mouse. J. Vis. Exp. (108), e53483, doi:10.3791/53483 (2016).

View Video