Summary

单元位置的Imaging-和流式细胞仪为基础的分析和3D球体黑色素瘤细胞周期

Published: December 28, 2015
doi:

Summary

We describe two complementary methods using the fluorescence ubiquitination cell cycle indicator (FUCCI) and image analysis or flow cytometry to identify and isolate cells in the inner G1 arrested and outer proliferating regions of 3D spheroids.

Abstract

Three-dimensional (3D) tumor spheroids are utilized in cancer research as a more accurate model of the in vivo tumor microenvironment, compared to traditional two-dimensional (2D) cell culture. The spheroid model is able to mimic the effects of cell-cell interaction, hypoxia and nutrient deprivation, and drug penetration. One characteristic of this model is the development of a necrotic core, surrounded by a ring of G1 arrested cells, with proliferating cells on the outer layers of the spheroid. Of interest in the cancer field is how different regions of the spheroid respond to drug therapies as well as genetic or environmental manipulation. We describe here the use of the fluorescence ubiquitination cell cycle indicator (FUCCI) system along with cytometry and image analysis using commercial software to characterize the cell cycle status of cells with respect to their position inside melanoma spheroids. These methods may be used to track changes in cell cycle status, gene/protein expression or cell viability in different sub-regions of tumor spheroids over time and under different conditions.

Introduction

多细胞三维球状体已被被称为肿瘤模型数十年,但它只是在最近,他们已进入更常见的用法作为体外模型对许多实体癌症。它们越来越多地被用于高通量药物发现屏幕作为中间之间的复杂,昂贵和费时的体内模型和简单的,低成本的2D单层模型1-6。研究在2D培养往往无法在体内被复制。许多类型的癌症的球体模型是能够模仿的生长特性,药物敏感性,药物渗透,细胞-细胞相互作用,氧和营养物和坏死的发展是见于体内实体肿瘤6-11的有限的可及。球状体开发出坏死核心,包围芯静止或G 1被捕区域,并在球体7的周边增殖细胞。这些区域的发展可根据细胞密度,增殖率和球体12的尺寸而变化。据推测,见于这些不同子区的细胞异质性可能会导致癌症治疗电阻13,14。因此,分析细胞在这些区域中的能力分别是至关重要的理解肿瘤药物反应。

荧光泛素细胞周期指示符(FUCCI)系统是基于红色(Kusabira橙色-正)和绿色(Azami格林- AG)CDT1和geminin的荧光标记,这是降解的细胞周期15的不同阶段。因此细胞核出现红色于G1,黄S中的早期和绿色中的S / G2 / M期。我们在这里描述两个互补方法均使用FUCCI来识别细胞周期,随着使用成像软件或染料扩散流式细胞仪测定的,以确定细胞是否驻留在G1被捕中心或外细胞增生克环,和个体细胞从旋转椭圆体的边缘的距离。这些方法被开发在我们以前的出版物,在这里我们表明,黑色素瘤细胞在低氧区域中的旋转椭圆体的中心和/或在靶向治疗的存在下能够保持在G1期阻滞延长的时间段,并且可以重新在更有利的条件出现7进入细胞周期。

Protocol

1. FUCCI转导和细胞培养 FUCCI转导创建细胞系稳定表达FUCCI使用慢病毒共转导如前所述7构造mKO2-hCdt1(30-120)和MAG-hGem(1-100)15。 注:FUCCI系统现在市售的。 生成子的克隆与明亮的荧光由单细胞分选。排序单阳性细胞都AG和KO(黄色)通过荧光激活细胞分选入96孔板如前所述7,16。 黑色素细胞培植培养C8161人黑素瘤细胞如前所述7,…

Representative Results

有产生肿瘤球状体的几种方法,该协议使用非贴壁生长的方法,其中细胞在琼脂或琼脂糖3,7,9中培养。 图1示出 C8161黑素瘤球体的后琼脂上3天的例子。 C8161球状体形成正常尺寸的球体的直径为500 – 600微米(平均值= 565,标准差= 19中,n = 3)后3天。其他黑素瘤细胞系,将形成球状体包括:WM793,WM983C,WM983B,WM164,1205LU(用该细胞系形成的球状体是不规则的,较不密集19)。…

Discussion

半自动化图像分析,鉴定球体内G1被捕区域,和增殖外层。这种方法可以在活球状体用光学部分被使用,或在固定的球体部分,以识别变化不仅在细胞周期但标记表达(通过免疫荧光),细胞死亡,或细胞形态在这些不同的区域。不同球状体区域内的细胞运动性,也可以定量 – 如果连同一个细胞跟踪图像分析​​步骤的现场共焦时间推移成像溶液。关键的图像分析是,高品质的Z-切片的共聚焦图像…

Divulgations

The authors have nothing to disclose.

Acknowledgements

We thank Ms. Danae Sharp and Ms. Sheena Daignault for technical assistance. We thank Dr. Atsushi Miyawaki, RIKEN, Wako-city, Japan, for providing the FUCCI constructs, Dr. Meenhard Herlyn and Ms. Patricia Brafford, The Wistar Institute, Philadelphia, for providing cell lines, the Imaging and Flow Cytometry Facility at the Centenary Institute for outstanding technical support. We thank Mr. Chris Johnson and Dr. Andrew Barlow for Volocity software technical support. N.K.H. is a Cameron fellow of the Melanoma and Skin Cancer Research Institute, Australia. K.A.B. is a fellow of the Cancer Institute New South Wales (13/ECF/1-39). W.W. is a fellow of the Cancer Institute New South Wales (11/CDF/3-39). This work was supported by project grants RG 09-08 and RG 13-06 (Cancer Council New South Wales), 570778 and 1051996 (Priority-driven collaborative cancer research scheme/Cancer Australia/Cure Cancer Australia Foundation), 08/RFG/1-27 (Cancer Institute New South Wales), and APP1003637 and APP1084893 (National Health and Medical Research Council).

Materials

Hoechst 33342 Life Technologies H3570
agarose low melting point Life Technologies 16520-050 For sectioning
noble agar  Sigma A5431 For making spheroids
agarose for spheroids Fisher Scientific BP1356-100 For making spheroids
0.05% trypsin/EDTA Life Technologies 25300-054
HBSS Life Technologies 14175-103
10% formalin Sigma HT5014-1CS CAUTION: Harmful, corrosive. Use Personal Protective Equipment, do  not breath fumes (open in a fume cupboard).
live/dead near IR Life Technologies L10119
vibratome Technical Products International, Inc
coulture cup Thermo-Fisher Scientific SIE936 Mold for sectioning spheroids
hemocytometer Sigma Z359629
96-well tissue culture plate Invitro FAL353072
collagenase Sigma C5138 
confocal microscope Leica TCS SP5
Flow cytometer analyser Becton Dickinson LSRFortessa
volocity PerkinElmer Imaging software
flowjo Tree Star Flow cytometry software
Vaccuum grease Sigma Z273554
Mounting media Vector Laboratories H1000
FUCCI (commercial constructs) Life Technologies P36238 Transient transfection only
Cell strainer 70 um In Vitro FAL352350
Round bottom 5 mL tubes (sterile) In Vitro FAL352003
Round bottom 5 mL tubes (non-sterile) In Vitro FAL352008

References

  1. LaBarbera, D. V., Reid, B. G., Yoo, B. H. The multicellular tumor spheroid model for high-throughput cancer drug discovery. Expert opinion on drug discovery. 7, 819-830 (2012).
  2. Beaumont, K. A., Mohana-Kumaran, N., Haass, N. K. Modeling Melanoma In Vitro and In Vivo. Healthcare. 2, 27-46 (2014).
  3. Smalley, K. S., Lioni, M., Noma, K., Haass, N. K., Herlyn, M. In vitro three-dimensional tumor microenvironment models for anticancer drug discovery. Expert opinion on drug discovery. 3, 1-10 (2008).
  4. Reid, B. G., et al. Live multicellular tumor spheroid models for high-content imaging and screening in cancer drug discovery. Current chemical genomics and translational medicine. 8, 27-35 (2014).
  5. Kunz-Schughart, L. A., Freyer, J. P., Hofstaedter, F., Ebner, R. The use of 3-D cultures for high-throughput screening: the multicellular spheroid model. Journal of biomolecular screening. 9, 273-285 (2004).
  6. Hirschhaeuser, F., et al. Multicellular tumor spheroids: an underestimated tool is catching up again. Journal of biotechnology. 148, 3-15 (2010).
  7. Haass, N. K., et al. Real-time cell cycle imaging during melanoma growth, invasion, and drug response. Pigment cell & melanoma research. 27, 764-776 (2014).
  8. Lucas, K. M., et al. Modulation of NOXA and MCL-1 as a strategy for sensitizing melanoma cells to the BH3-mimetic ABT-737. Clinical cancer research : an official journal of the American Association for Cancer Research. 18, 783-795 (2012).
  9. Smalley, K. S., et al. Multiple signaling pathways must be targeted to overcome drug resistance in cell lines derived from melanoma metastases. Molecular cancer therapeutics. 5, 1136-1144 (2006).
  10. Thoma, C. R., Zimmermann, M., Agarkova, I., Kelm, J. M., Krek, W. 3D cell culture systems modeling tumor growth determinants in cancer target discovery. Advanced drug delivery reviews. 69-70, 29-41 (2014).
  11. Santini, M. T., Rainaldi, G. Three-dimensional spheroid model in tumor biology. Pathobiology : journal of immunopathology, molecular and cellular biology. 67, 148-157 (1999).
  12. Sutherland, R. M. Cell and environment interactions in tumor microregions: the multicell spheroid model. Science. 240, 177-184 (1988).
  13. Haass, N. K. Dynamic tumour heterogeneity in melanoma therapy: how do we address this in a novel model system?. Melanoma Manag. 2, 93-95 (2015).
  14. Desoize, B., Jardillier, J. Multicellular resistance: a paradigm for clinical resistance. Critical reviews in oncology/hematology. 36, 193-207 (2000).
  15. Sakaue-Sawano, A., et al. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell. 132, 487-498 (2008).
  16. Basu, S., Campbell, H. M., Dittel, B. N., Ray, A. Purification of specific cell population by fluorescence activated cell sorting (FACS). Journal of visualized experiments : JoVE. , (2010).
  17. Smalley, K. S., et al. Up-regulated expression of zonula occludens protein-1 in human melanoma associates with N-cadherin and contributes to invasion and adhesion. The American journal of pathology. 166, 1541-1554 (2005).
  18. Wang, Q., et al. Targeting glutamine transport to suppress melanoma cell growth. International journal of cancer. Journal international du cancer. 135, 1060-1071 (2014).
  19. Lorenzo, C., et al. Live cell division dynamics monitoring in 3D large spheroid tumor models using light sheet microscopy. Cell division. 6, 22 (2011).
  20. Pampaloni, F., Ansari, N., Stelzer, E. H. High-resolution deep imaging of live cellular spheroids with light-sheet-based fluorescence microscopy. Cell and tissue research. 352, 161-177 (2013).
  21. Durand, R. E. Use of Hoechst 33342 for cell selection from multicell systems. The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society. 30, 117-122 (1982).
  22. Laurent, J., et al. Multicellular tumor spheroid models to explore cell cycle checkpoints in 3D. BMC cancer. 13, 73 (2013).
  23. LaRue, K. E., Khalil, M., Freyer, J. P. Microenvironmental regulation of proliferation in multicellular spheroids is mediated through differential expression of cyclin-dependent kinase inhibitors. Cancer research. 64, 1621-1631 (2004).
  24. Kyle, A. H., Huxham, L. A., Baker, J. H., Burston, H. E., Minchinton, A. I. Tumor distribution of bromodeoxyuridine-labeled cells is strongly dose dependent. Cancer research. 63, 5707-5711 (2003).
  25. Minchinton, A. I., Tannock, I. F. Drug penetration in solid tumours. Nature reviews. Cancer. 6, 583-592 (2006).
  26. Giesbrecht, J. L., Wilson, W. R., Hill, R. P. Radiobiological studies of cells in multicellular spheroids using a sequential trypsinization technique. Radiation research. 86, 368-386 (1981).
check_url/fr/53486?article_type=t

Play Video

Citer Cet Article
Beaumont, K. A., Anfosso, A., Ahmed, F., Weninger, W., Haass, N. K. Imaging- and Flow Cytometry-based Analysis of Cell Position and the Cell Cycle in 3D Melanoma Spheroids. J. Vis. Exp. (106), e53486, doi:10.3791/53486 (2015).

View Video