Summary

실내 온도에서 탄소 나노 시트의 제조

Published: March 08, 2016
doi:

Summary

We present the synthesis of an amphiphilic hexayne and its use in the preparation of carbon nanosheets at the air-water interface from a self-assembled monolayer of these reactive, carbon-rich molecular precursors.

Abstract

Amphiphilic molecules equipped with a reactive, carbon-rich “oligoyne” segment consisting of conjugated carbon-carbon triple bonds self-assemble into defined aggregates in aqueous media and at the air-water interface. In the aggregated state, the oligoynes can then be carbonized under mild conditions while preserving the morphology and the embedded chemical functionalization. This novel approach provides direct access to functionalized carbon nanomaterials. In this article, we present a synthetic approach that allows us to prepare hexayne carboxylate amphiphiles as carbon-rich siblings of typical fatty acid esters through a series of repeated bromination and Negishi-type cross-coupling reactions. The obtained compounds are designed to self-assemble into monolayers at the air-water interface, and we show how this can be achieved in a Langmuir trough. Thus, compression of the molecules at the air-water interface triggers the film formation and leads to a densely packed layer of the molecules. The complete carbonization of the films at the air-water interface is then accomplished by cross-linking of the hexayne layer at room temperature, using UV irradiation as a mild external stimulus. The changes in the layer during this process can be monitored with the help of infrared reflection-absorption spectroscopy and Brewster angle microscopy. Moreover, a transfer of the carbonized films onto solid substrates by the Langmuir-Blodgett technique has enabled us to prove that they were carbon nanosheets with lateral dimensions on the order of centimeters.

Introduction

이차원 탄소 나노 인해보고 우수한 열적, 전기적뿐만 아니라 기계적 성질 1-5에 상당한 관심을 끈다. 이들 물질은 폴리머 복합체 6, 에너지 저장 장치 (7) 및 전자 분자 8-10의 분야에서 기술적 인 발전을 촉진 할 것으로 예상된다. 최근 몇 년 동안 집중적 인 연구 노력에도 불구하고, 잘 정의 된 탄소 나노 재료의 많은 양에 대한 액세스는 여전히 기술적 애플리케이션 (11, 12)에서의 대형 구현을 방해하는 제한된다.

탄소 나노 물질 중 하나 하향식 또는 상향식 (bottom-up) 접근 방식으로 액세스 할 수 있습니다. 이러한면 14-16에서 박리 기술 (13) 또는 고 에너지 처리와 일반적인 접근법 구조적 완전성 매우 좋은 성능의 높은 수준의 재료를 얻을 수있는 가능성을 제공한다. 그러나, 단리 및 정제 번째전자 제품은 도전 남아 있고 정의 나노 물질의 대량 생산이 곤란하다 (12). 한편, 상향식 접근은 분자 전구체의 사용에 의존하는 정의 된 구조로 구성하고, 카본 나노 구조물을 산출 17-23 후속의 탄화를 사용할 수있다. 이 경우, 전구체 자체는 더 복잡하고 이들의 제조는 종종 다수의 합성 단계를 필요로한다. 이러한 접근법 얻어진 재료의 화학적 및 물리적 특성을 고도의 제어를 제공 할 수 있고, 맞춤형 재료에 직접 액세스를 제출된다. 그러나, 탄소 나노 물질에 전구체의 변환은 일반적으로 포함 화학 작용 24-27의 손실에 이르게 800 ° C,보다 높은 온도에서 수행된다.

위에서 언급 한 제한은 캘리포니아 반응성이 매우 높은 oligoynes을 이용하여 우리 그룹에서 해결되었습니다n은 실온 (28, 29)에 탄소 나노 물질로 변환 될 수있다. 특히, 친수성 헤드 기 및 hexayne 세그먼트를 포함하는 양친은 브롬화 팔라듐 – 매개 네기 교차 – 커플 링 반응 (30, 31)의 시퀀스를 통해 접근 가능하다. 타겟 구조로 이들 전구체 분자의 변환이나 UV 광 조사에 의해 상온 이하로 발생한다. oligoyne의 양친의 높은 반응성은 가능한 공기 – 물 계면 또는 유체 – 유체 인터페이스, 소프트 템플릿을 사용할 수있다. 이전 연구에서, 우리는 성공적으로 hexayne 글리코 시드의 양친 (28)의 솔루션에서 소포를 준비했다. 이러한 소체의 가교는 샘플의 UV 조사에 의해 온화한 조건 하에서 이루어졌다. 또한, 최근 카르 복실 산 메틸 머리 기 및 랭 뮤어 통 내의 공기 – 물 계면에서 소수성 알킬 꼬리 hexaynes으로부터 자기 조직화 단층을 준비했다. 조밀 팩에드 분자 전구체는 노골적 UV 조사에 의해 상온에서 자립 탄소 나노 시트로 전환 하였다. 종래 방식에서 정의 된 분자 전구체는 최근 공기 – 물 계면에서 32-38 이차원 적으로 전개 된 나노 시트의 제조에 사용되어왔다.

이 연구의 목적은 hexayne의 양친으로부터 탄소 나노 시트의 제조를 허용 전반적인 합성 및 제조 공정 간결 실질적인 개요를 제공하는 것이다. 초점은 실험적인 접근 방법과 예비 질문입니다.

Protocol

주의 : 어떤 화학 화합물의 사용하기 전에 관련 물질 안전 보건 자료 (MSDS)를 참조하시기 바랍니다. 이러한 합성에 사용되는 화학 물질 중 일부는 급성 독성 및 발암 성이다. 준비 나노 물질은 대량의 대응에 비해 추가적인 위험이있을 수 있습니다. 반응 (흄 후드) 및 개인 보호 장비 (안전 안경, 장갑, 실험실 코트, 전체 길이 바지, 폐쇄 발가락 신발)를 수행 할 때 모든 적절한 안전 방법을 사용하는 …

Representative Results

준비된 전구체 분자의 C 13 핵 자기 공명 (NMR) 스펙트럼 (3) 디스플레이 δ = 82-60 PPM (도 1B)에 대응하는 화학 시프트와 hexayne 세그먼트의 12 SP -hybridized 탄소수. 또한, δ = 173 ppm에서와 δ = 52 ppm에서 신호가 각각 에스테르의 카르 보닐 메틸 탄소에 할당됩니다. δ = 33-14 PPM 간의 신호 도데 실 잔기의 지방족 탄소에 기인한다. (3)의</stro…

Discussion

원하는 hexayne의 친 양쪽 성체 (3) 노골적 순차 브롬화 (52, 53)에 의해 제조되고 tritylphenyl 에스테르 (2) (도 1a) (29)의 최종적인 탈 보호 반응에 의해, 알킨 세그먼트의 신도 (30, 31)을 팔라듐이 촉매 작용 하였다. 성공적인 합성 31,54 13 C NMR 스펙트럼 (도 1b)에서뿐만 아니라 UV-비스 흡수 스펙트럼 (도 1C)를 확인한다. 이것은 높…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Funding from the European Research Council (ERC Grant 239831) and a Humboldt Fellowship (BS) is gratefully acknowledged.

Materials

Methyllithium lithium bromide complex (2.2M solution in diethylether) Acros 18129-1000 air-sensitive, flammable
Zinc chloride (0.7M solution in THF) Acros 38945-1000 air-sensitive, flammable
1,1'-Bis(diphenylphosphino)ferrocene]
dichloropalladium(II), DCM adduct 
Boron Molecular BM187
N-Bromosuccinimide Acros 10745 light-sensitive
Silver fluoride Fluorochem 002862-10g light-sensitive
n-Butyllithium (2.5M solution in hexanes) Acros 21335-1000 air-sensitive, flammable
Sodium methanolate Acros 17312-0050
Tetrahydrofuran (unstabilized, for HPLC) Fisher Chemicals T/0706/PB17 This solvent was dried as well as degassed using a solvent purification system (Innovative Technology, Inc, Amesbury, MA, USA)
Toluene (for HPLC) Fisher Chemicals T/2306/17 This solvent was dried as well as degassed using a solvent purification system (Innovative Technology, Inc, Amesbury, MA, USA)
Acetonitrile (for HPLC) Fisher Chemicals A/0627/17 This solvent was dried as well as degassed using a solvent purification system (Innovative Technology, Inc, Amesbury, MA, USA)
Dichloromethane (Extra Dry over Molecular Sieve) Acros 34846-0010
Chloroforme (p.a.) VWR International 1.02445.1000
Pentane Reactolab 99050 Purchased as reagent grade and distilled once prior to use
Heptane Reactolab 99733 Purchased as reagent grade and distilled once prior to use
Dichloromethane Reactolab 99375 Purchased as reagent grade and distilled once prior to use
Diethylether Reactolab 99362 Purchased as reagent grade and distilled once prior to use
Geduran silica gel (Si 60, 40-60µm) Merck 1115671000
Langmuir trough R&K, Potsdam
Thermostat  E1 Medingen
Hamilton syringe  Model 1810 RN SYR
Vertex 70 FT-IR spectrometer  Bruker
External air/water reflection unit (XA-511)  Bruker
UV lamp (250 W, Ga-doped metal halide bulb) UV-Light Technology
Brewster angle microscope (BAM1+)  NFT Göttingen
Sapphire substrates Stecher Ceramics
Quantifoil holey carbon TEM grids Electron Microscopy Sciences
Nuclear magnetic resonance spectrometer (Bruker Avance III 400) Bruker
JASCO V-670 UV/Vis spectrometer JASCO
Scanning Electron Microscope (Zeiss Merlin FE-SEM) Zeiss

References

  1. Geim, A. K., Novoselov, K. S. The rise of graphene. Nature Mater. 6 (3), 183-191 (2007).
  2. Lee, C., Wei, X., Kysar, J. W., Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science. 321 (5887), 385-388 (2008).
  3. Lee, J. H., Loya, P. E., Lou, J., Thomas, E. L. Dynamic mechanical behavior of multilayer graphene via supersonic projectile penetration. Science. 346 (6213), 1092-1096 (2014).
  4. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81 (1), 109-162 (2009).
  5. Lau, C. N., Bao, W., Velasco, J. Properties of suspended graphene membranes. Mater. Today. 15 (6), 238-245 (2012).
  6. Ramanathan, T., et al. Functionalized graphene sheets for polymer nanocomposites. Nature Nanotechnol. 3 (6), 327-331 (2008).
  7. Fan, Z., Yan, J., Ning, G., Wei, T., Zhi, L., Wei, F. Porous graphene networks as high performance anode materials for lithium ion batteries. Carbon. 60, 558-561 (2013).
  8. Fiori, G., et al. Electronics based on two-dimensional materials. Nature Nanotechnol. 9 (10), 768-779 (2014).
  9. Burghard, M., Klauk, H., Kern, K. Carbon-Based Field-Effect Transistors for Nanoelectronics. Adv. Mater. 21 (25-26), 2586-2600 (2009).
  10. Avouris, P., Chen, Z., Perebeinos, V. Carbon-based electronics. Nature Nanotechnol. 2 (10), 605-615 (2007).
  11. Zurutuza, A., Marinelli, C. Challenges and opportunities in graphene commercialization. Nature Nanotechnol. 9 (10), 730-734 (2014).
  12. Novoselov, K. S., Fal’ko, V. I., Colombo, L., Gellert, P. R., Schwab, M. G., Kim, K. A roadmap for graphene. Nature. 490 (7419), 192-200 (2013).
  13. Novoselov, K. S., et al. Electric field effect in atomically thin carbon films. Science. 306 (5696), 666-669 (2004).
  14. Li, X., et al. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science. 324 (5932), 1312-1314 (2009).
  15. Sun, Z., Yan, Z., Yao, J., Beitler, E., Zhu, Y., Tour, J. M. Growth of graphene from solid carbon sources. Nature. 468 (7323), 549-552 (2010).
  16. Lee, J. H., et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science. 344 (6181), 286-289 (2014).
  17. Scott, L. T., et al. A rational chemical synthesis of C60. Science. 295 (5559), 1500-1503 (2002).
  18. Hoheisel, T. N., Schrettl, S., Szilluweit, R., Frauenrath, H. Nanostructured Carbonaceous Materials from Molecular Precursors. Angew. Chem. Int. Ed. 49 (37), 6496-6515 (2010).
  19. Schrettl, S., Frauenrath, H. Elements for a Rational Polymer Approach towards Carbon Nanostructures. Angew. Chem. Int. Ed. 51 (27), 6569-6571 (2012).
  20. Müllen, K. Evolution of Graphene Molecules: Structural and Functional Complexity as Driving Forces behind Nanoscience. ACS Nano. 8 (7), 6531-6541 (2014).
  21. Chen, L., Hernandez, Y., Feng, X., Müllen, K. From Nanographene and Graphene Nanoribbons to Graphene Sheets: Chemical Synthesis. Angew. Chem. Int. Ed. 51 (31), 7640-7654 (2012).
  22. Paraknowitsch, J. P., Thomas, A. Functional Carbon Materials From Ionic Liquid Precursors. Macromol. Chem. Phys. 213 (10-11), 1132-1145 (2012).
  23. Titirici, M. M., et al. Sustainable carbon materials. Chem. Soc. Rev. 44 (1), 250-290 (2015).
  24. Angelova, P., et al. A universal scheme to convert aromatic molecular monolayers into functional carbon nanomembranes. ACS Nano. 7 (8), 6489-6497 (2013).
  25. Zhi, L., Wu, J., Li, J., Kolb, U., Müllen, K. Carbonization of Disclike Molecules in Porous Alumina Membranes : Toward Carbon Nanotubes with Controlled Graphene-Layer Orientation. Angew. Chem. Int. Ed. 44 (14), 2120-2123 (2005).
  26. Zhi, L., et al. From Well-Defined Carbon-Rich Precursors to Monodisperse Carbon Particles with Hierarchic Structures. Adv. Mater. 19 (14), 1849-1853 (2007).
  27. Matei, D. G., et al. Functional single-layer graphene sheets from aromatic monolayers. Adv. Mater. 25 (30), 4146-4151 (2013).
  28. Szilluweit, R., et al. Low-temperature preparation of tailored carbon nanostructures in water. Nano Lett. 12 (5), 2573-2578 (2012).
  29. Schrettl, S., et al. Functional carbon nanosheets prepared from hexayne amphiphile monolayers at room temperature. Nature Chem. 6 (6), 468-476 (2014).
  30. Hoheisel, T. N., Frauenrath, H. A Convenient Negishi Protocol for the Synthesis of Glycosylated Oligo(ethynylene)s. Org. Lett. 10 (20), 4525-4528 (2008).
  31. Schrettl, S., et al. Facile synthesis of oligoyne amphiphiles and their rotaxanes. Chem. Sci. 6 (1), 564-574 (2015).
  32. Sakamoto, J., van Heijst, J., Lukin, O., Schlüter, A. D. Two-Dimensional Polymers: Just a Dream of Synthetic Chemists?. Angew. Chem. Int. Ed. 48 (6), 1030-1069 (2009).
  33. Bauer, T., et al. Synthesis of Free-Standing, Monolayered Organometallic Sheets at the Air/Water Interface. Angew. Chem. Int. Ed. 50 (34), 7879-7884 (2011).
  34. Payamyar, P., et al. Synthesis of a Covalent Monolayer Sheet by Photochemical Anthracene Dimerization at the Air/Water Interface and its Mechanical Characterization by AFM Indentation. Adv. Mater. 26 (13), 2052-2058 (2014).
  35. Zheng, Z., et al. Synthesis of Two-Dimensional Analogues of Copolymers by Site-to-Site Transmetalation of Organometallic Monolayer Sheets. J. Am. Chem. Soc. 136 (16), 6103-6110 (2014).
  36. Sakamoto, R., et al. A photofunctional bottom-up bis(dipyrrinato)zinc(II) complex nanosheet. Nature Commun. 6, 6713 (2015).
  37. van Heijst, J., Corda, M., Lukin, O. Compounds bearing multiple photoreactive chalcone units: Synthesis and study towards 2D polymerization in Langmuir monolayers. Polymer. 70, 1-7 (2015).
  38. Murray, D. J., et al. Large area synthesis of a nanoporous two-dimensional polymer at the air/water interface. J. Am. Chem. Soc. 137 (10), 3450-3453 (2015).
  39. Li, J. J., Limberakis, C., Pflum, D. A. . Modern Organic Synthesis in the Laboratory. , (2007).
  40. Chai, C., Armarego, W. L. F. . Purification of Laboratory Chemicals. , (2003).
  41. Hoheisel, T. N., et al. A multistep single-crystal-to-single-crystal bromodiacetylene dimerization. Nature Chem. 5 (4), 327-334 (2013).
  42. Brzozowska, A. M., Duits, M. H. G., Mugele, F. Stability of stearic acid monolayers on Artificial Sea Water. Colloids Surf., A. 407, 38-48 (2012).
  43. Davies, J. T., Rideal, E. K. . Interfacial Phenomena. , (1963).
  44. Mendelsohn, R., Flach, C. R. Infrared Reflection-Absorption Spectrometry of Monolayer Films at the Air-Water Interface. Handbook of Vibrational Spectroscopy. , 1028-1041 (2002).
  45. Mendelsohn, R., Mao, G., Flach, C. R. Infrared reflection-absorption spectroscopy: Principles and applications to lipid-protein interaction in Langmuir films. Biochim. Biophys. Acta Biomembr. 1798 (4), 788-800 (2010).
  46. Hoenig, D., Moebius, D. Direct visualization of monolayers at the air-water interface by Brewster angle microscopy. J. Phys. Chem. 95 (12), 4590-4592 (1991).
  47. Hénon, S., Meunier, J. Microscope at the Brewster angle: Direct observation of first-order phase transitions in monolayers. Rev. Sci. Instrum. 62 (4), 936-939 (1991).
  48. Kirby, K. W., Shanmugasundaram, K., Bojan, V., Ruzyllo, J. Interactions of Sapphire Surfaces with Standard Cleaning Solutions. ECS Trans. 11 (2), 343-349 (2007).
  49. Blodgett, K. B. Films Built by Depositing Successive Monomolecular Layers on a Solid Surface. J. Am. Chem. Soc. 57 (6), 1007-1022 (1935).
  50. Langmuir, I., Schaefer, V. J. Activities of Urease and Pepsin Monolayers. J. Am. Chem. Soc. 60 (6), 1351-1360 (1938).
  51. Mendelsohn, R., Brauner, J. W., Gericke, A. External infrared reflection absorption spectrometry of monolayer films at the air-water interface. Annu. Rev. Phys. Chem. 46 (1), 305-334 (1995).
  52. Hofmeister, H., Annen, K., Laurent, H., Wiechert, R. A Novel Entry to 17a-Bromo- and 17a-Iodoethynyl Steroids. Angew. Chem. Int. Ed. Engl. 23 (9), 727-729 (1984).
  53. Kim, S., Kim, S., Lee, T., Ko, H., Kim, D. A New, Iterative Strategy for the Synthesis of Unsymmetrical Polyynes: Application to the Total Synthesis of 15,16-Dihydrominquartynoic Acid. Org. Lett. 6 (20), 3601-3604 (2004).
  54. Chalifoux, W. A., Tykwinski, R. R. Synthesis of polyynes to model the sp-carbon allotrope carbyne. Nature Chem. 2 (11), 967-971 (2010).
  55. Kaganer, V. M., Möhwald, H., Dutta, P. Structure and phase transitions in Langmuir monolayers. Rev. Mod. Phys. 71 (3), 779-819 (1999).
  56. Eda, G., et al. Blue photoluminescence from chemically derived graphene oxide. Adv. Mater. 22 (4), 505-509 (2010).
  57. Kumar, P. V., Bardhan, N. M., Tongay, S., Wu, J., Belcher, A. M., Grossman, J. C. Scalable enhancement of graphene oxide properties by thermally driven phase transformation. Nature Chem. 6 (2), 151-158 (2014).
  58. Chernick, E. T., Tykwinski, R. R. Carbon-rich nanostructures: the conversion of acetylenes into materials. J. Phys. Org. Chem. 26 (9), 742-749 (2013).
  59. Rondeau-Gagné, S., Morin, J. F. Preparation of carbon nanomaterials from molecular precursors. Chem. Soc. Rev. 43 (1), 85-98 (2014).
check_url/fr/53505?article_type=t

Play Video

Citer Cet Article
Schrettl, S., Schulte, B., Stefaniu, C., Oliveira, J., Brezesinski, G., Frauenrath, H. Preparation of Carbon Nanosheets at Room Temperature. J. Vis. Exp. (109), e53505, doi:10.3791/53505 (2016).

View Video