Summary

使用N-零价金属芯纳米粒子的生成(2-氨基乙基)-3- aminosilanetriol

Published: February 11, 2016
doi:

Summary

A novel method for metal core nanoparticle synthesis using a water stable silanol is described.

Abstract

In this work, a facile one-pot reaction for the formation of metal nanoparticles in a water solution through the use of n-(2-aminoethyl)-3-aminosilanetriol is presented. This compound can be used to effectively reduce and complex metal salts into metal core nanoparticles coated with the compound. By controlling the concentrations of salt and silane one is able to control reaction rates, particle size, and nanoparticle coating. The effects of these changes were characterized through transmission electron microscopy (TEM), UV-Vis spectrometry (UV-Vis), Nuclear Magnetic Resonance spectroscopy (NMR) and Fourier Transform Infrared spectroscopy (FTIR). A unique aspect to this reaction is that usually silanes hydrolyze and cross-link in water; however, in this system the silane is water-soluble and stable. It is known that silicon and amino moieties can form complexes with metal salts. The silicon is known to extend its coordination sphere to form penta- or hexa-coordinated species. Furthermore, the silanol group can undergo hydrolysis to form a Si-O-Si silica network, thereby transforming the metal nanoparticles into a functionalized nanocomposites.

Introduction

作为需求和设计者纳米材料的增加的应用程序,所以做合成的各种方法。的“自上而下”的方法,如激光烧蚀或化学蚀刻已采用的出色的可控性和解决材料可靠地降低到亚微米级的能力。这些方法依赖于散装物料在被加工成较细的部件,其通常增加生产的成本,因为所需要的纳米结构尺寸减小。合成本的另一种方法是在“自下而上”的方法,这在分子水平上控制合成和积聚到期望的纳米结构。这赋予所期望的自组装体,功能性,被动,并且在这些纳米结构材料1的产生稳定控制的一个显著程度。通过从分子水平的工作,可以生成混合纳米复合材料相同structu内提供这两种材料的优点回覆。

作为纳米材料通过自下而上策略合成方法需要被用来控制颗粒大小,形状,质地,疏水性,多孔性,电荷,和官能度为2。在金属芯纳米颗粒合成,初始金属盐在自催化过程减小到产生零价颗粒,而这又指示其他粒子的成核。这导致集群和最终纳米粒子的生产3。在努力控制创建的纳米粒子的尺寸并防止它们沉淀出来的溶液,稳定剂,例如配体,表面活性剂,离子电荷,和大的聚合物是利用它们对从进一步凝聚4-10方框纳米颗粒的能力。这些材料抑制纳米粒子的范德华引力,无论是通过空间位阻,由于体积大的基团的存在或通过库仑斥力3。

在T他的工作,一个轻便,一锅合成使用硅烷各种金属芯纳米颗粒的生成策略,N-(2-氨基乙基)-3- aminosilanetriol(2- AST)呈现图1)。关于该化合物的配体是能够还原金属前体和稳定的金属纳米颗粒具有相对高的效能。本三硅烷醇部分也能够交联的,这形成了与它的基体图2)内的纳米颗粒浸渍的有机硅烷聚合物的互连网络。不像大多数硅烷,在水的存在下容易地进行水解,该化合物在水中,这对于疏水性的目的,稳定性和控制利于稳定。

Protocol

注意:所有试剂被用作是制造商,没有进一步纯化。反应通过UV-Vis光谱为最多一周监测,以确保完全还原。所有反应都发泄罩下进行,适当的安全的服装穿在任何时候,包括手套,护目镜,和实验室大衣。 1.银纳米颗粒的合成称出硝酸银直接的0.0169克(0.1毫摩尔)放入50毫升的Erlenmeyer烧瓶中。 加在20毫升的超纯水18.2兆欧和磁力搅拌棒。盖瓶具塞以防止蒸发。 </…

Representative Results

将反应物​​通过紫外可见光谱监测的纳米颗粒形成应该产生的峰为每个单独的金属纳米粒子的特性。合成材料的最终分析通过TEM和FTIR完成。从样品的干燥粉末,得到的FTIR光谱。粒度分析可以通过从通过TEM和平均结果获得的图像测量纳米颗粒的直径来实现。 用2- AST硅烷纳米颗粒的络合可以与FTIR由硅烷和胺官能的特征峰…

Discussion

本文报道盐是被测试的金属,唯一的盐。其结果是,它是不定的,该反应的策略将与金属的所有的盐,特别是金工作。在水中这些盐的溶解性也可能影响在反应时间,形态和产率方面的反应的结果。在所有的反应中,硅烷加入到已溶解的金属盐溶液。

值得一提的是,必须小心,以确保准确性用于这些反应的所需要的金属的盐,其可以是吸湿性或潮解性18小浓度。此问?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Dr. B.P.S. Chauhan would like to gratefully acknowledge William Paterson University for assigned release time (ART) award for part of the research described here and also for the research program in general.

Materials

n-(2-aminoethyl)-3-aminosilanetriol (2-AST) Gelest SIA0590.0 25% in H2O
Silver nitrate Sigma Aldrich S6506
Gold(III) chloride trihydrate Sigma Aldrich 520918
Palladium(II) Nitrate Alfa Aesar 11035
Deuterium Dioxide Cambridge Isotope Laboratories DLM-4-100

References

  1. Corriu, R. Organosilicon Chemistry and Nanoscience. J Organomet Chem. 686, 32-41 (2003).
  2. Chou, L. Y., Ming, K., Chan, W. Strategies for the intracellular delivery of nanoparticles. Chem. Soc. Rev. 40 (1), 233-245 (2011).
  3. Richards, R., Bönnemann, H. Synthetic Approaches to Metallic Nanomaterials. Nanofabrication towards Biomedical Applications. , 4-9 (2005).
  4. Bradley, J., Schmid, G. Chapter 6, Unit 6.2.2, The Chemistry of Transition Metal Colloids: Synthetic Methods for the Preparation of Colloidal Transition Metals. Clusters and Colloids. , 469-473 (1994).
  5. Paterer, A., et al. Investigation on the formation of copper zinc tin sulphide nanoparticles from metal salts and dodecanethiol. Mater. Chem. Phys. 149-150, 94-98 (2015).
  6. Yi, D. K., Lee, S. S., Ying, J. Y. Synthesis and Applications of Magnetic Nanocomposite Catalysts. Chem. Mater. 18, 2459-2461 (2006).
  7. Piepenbrock, M. M., Lloyd, G. O., Clarke, N., Steed, J. W. Metal- and Anion-Binding Supramolecular Gels. Chem. Rev. 110, 1960-2004 (2010).
  8. Wu, J. Preparation and Structural Characterization of Novel Nanohybrids by Cationic 3D Silica Nanoparticles Sandwiched between 2D Anionic Montmorillonite Clay through Electrostatic Attraction. J. Phys. Chem. C. 113 (30), 13036-13044 (2009).
  9. Spitalsky, Z. Carbon nanotube-polymer composites: Chemistry, Processing, Mechanical and Electrical Properties. Prog. Polym. Sci. 35, 357-401 (2010).
  10. Link, S., El-Sayed, M. A. Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods. J. Phys. Chem. B. 103 (40), 8410-8426 (1999).
  11. Fau, P., et al. Monitoring the Coordination of Amine Ligands on Silver Nanoparticles Using NMR and SERS. Langmuir. 31 (4), 1362-1367 (2015).
  12. Patil, H. B., Borse, S. V., Patil, D. R., Patil, U. K., Patil, H. M. Synthesis of silver nanoparticles by microbial method and their characterization. Arch. Phys. Res. 2 (3), 153-158 (2011).
  13. Ghosh, S., Sarma, N., Mandal, M., Kundu, S., Esumi, K., Pal, T. Evolution of gold nanoparticles in micelle by UV-irradiation: A conductometric study. Curr. Sci. 84 (6), 791-795 (2003).
  14. Paul, B., Bhuyan, B., Purkayastha, D. D., Dey, M., Dhar, S. S. Green synthesis of gold nanoparticles using Pogestemon benghalensis (B) O. Ktz leaf extract and studies of their photocatalytic activity in degradation of methylene. Mater. Lett. 148, 37-40 (2015).
  15. Chauhan, B. P. S., Rathore, S. Regioselective Synthesis of Multifunctional Hybrid Polysiloxanes Achieved by Pt-Nanocluster Catalysis. J. Am. Chem. Soc. 127, 5790-5791 (2005).
  16. Chauhan, B. P. S., Rathore, S., Bandoo, T. "Polysiloxane-Pd" Nanocomposites as Recyclable Chemoselective Hydrogenation Catalysts. J. Am. Chem. Soc. 126, 8493-8500 (2004).
  17. Chauhan, B. P. S., Rathore, S., Chauhan, M., Krawicz, A. Synthesis of Polysiloxane Stabilized Palladium Colloids and Evidence of Their Participation in Silaesterification Reactions. J. Am. Chem. Soc. 125, 2876-2877 (2003).
  18. Chauhan, B. P. S., Sardar, R., Tewari, P., Sharma, P. . , 23-25 (2003).
  19. Pouchert, C. J., Pouchert, C. .. J. Non-Aromatic Amines. The Aldrich Library of Infrared Spectra. , (1983).
  20. Arkles, B., et al. Infrared Analysis of Organosilicon Compounds: Spectra-Structure Correlations. Silicon Compounds Register and Review. , (1987).
  21. Corriu, R. J. P. Hypervalent Species of Silicon-structure and Reactivity. J. Organomet. Chem. 400, 81-106 (1990).
  22. . . Basic Instruction Manual: Hitachi HT7700 TEM. , 1-28 (2014).
  23. . . OMNIC User’s Guide Version 7.3: Thermo Electron Corporation. , 151-216 (2006).
check_url/fr/53507?article_type=t

Play Video

Citer Cet Article
Chauhan, B. P. S., Matam, S., Johnson, Q. R., Patel, A., Moran, K., Onyechi, B. Generation of Zerovalent Metal Core Nanoparticles Using n-(2-aminoethyl)-3-aminosilanetriol. J. Vis. Exp. (108), e53507, doi:10.3791/53507 (2016).

View Video