Summary

DamID-seq: L'échelle du génome Cartographie des protéine-ADN Interactions par séquençage à haut débit de fragments d'ADN adénine-méthylé

Published: January 27, 2016
doi:

Summary

Nous décrivons ici un essai en couplant l'identification ADN adénine méthyltransférase (DamID) pour le séquençage à haut débit (DamID-seq). Cette méthode améliorée offre une résolution plus élevée et une plage dynamique plus large, et permet l'analyse des données DamID-Seq en conjonction avec d'autres données de séquençage à haut débit tels que ChIP-seq, ARN-Seq, etc.

Abstract

The DNA adenine methyltransferase identification (DamID) assay is a powerful method to detect protein-DNA interactions both locally and genome-wide. It is an alternative approach to chromatin immunoprecipitation (ChIP). An expressed fusion protein consisting of the protein of interest and the E. coli DNA adenine methyltransferase can methylate the adenine base in GATC motifs near the sites of protein-DNA interactions. Adenine-methylated DNA fragments can then be specifically amplified and detected. The original DamID assay detects the genomic locations of methylated DNA fragments by hybridization to DNA microarrays, which is limited by the availability of microarrays and the density of predetermined probes. In this paper, we report the detailed protocol of integrating high throughput DNA sequencing into DamID (DamID-seq). The large number of short reads generated from DamID-seq enables detecting and localizing protein-DNA interactions genome-wide with high precision and sensitivity. We have used the DamID-seq assay to study genome-nuclear lamina (NL) interactions in mammalian cells, and have noticed that DamID-seq provides a high resolution and a wide dynamic range in detecting genome-NL interactions. The DamID-seq approach enables probing NL associations within gene structures and allows comparing genome-NL interaction maps with other functional genomic data, such as ChIP-seq and RNA-seq.

Introduction

ADN identification adénine méthyltransférase (DamID) 1,2 est une méthode pour détecter les interactions protéine-ADN in vivo et est une approche alternative à immunoprécipitation de la chromatine (ChIP) 3. Il utilise une quantité relativement faible de cellules et ne nécessite pas de reticulation chimique de l'ADN ou de protéines avec un anticorps hautement spécifique. Ce dernier est particulièrement utile lorsque la protéine cible est associée de façon lâche ou indirectement avec de l'ADN. DamID a été utilisé avec succès pour cartographier les sites de liaison d'une variété de protéines y compris des protéines d'enveloppe nucléaire 4-10, 11-13 protéines associées à la chromatine, les enzymes modifiant la chromatine, 14 facteurs de transcription et des co-facteurs d'ARNi 15-18 et 19 machines. Le procédé est applicable dans de nombreux organismes, y compris S. 13 cerevisiae, S. 7 pombe, C. 9,17 elegans, D. melanogaster 5,11,18,20, A. thaliana 21,22 ainsi que la souris et cellules humaines lignes 6,8,10,23,24.

Le développement de l'essai DamID était basée sur la détection spécifique de fragments d'ADN adénine-méthylé dans des cellules eucaryotes qui ne disposent pas la méthylation 2 adénine endogène. Une protéine de fusion exprimée, consistant en la protéine de liaison à l'ADN d'intérêt et E. adénine méthyltransférase coli DNA (barrage), peut méthyler la base adénine dans des séquences GATC qui sont à proximité spatiale (la plus significative au sein de 1 kb et jusqu'à environ 5 ko) pour les sites de liaison de la protéine dans le génome 2. Les fragments d'ADN peuvent être modifiées spécifiquement amplifiés et hybrides à des puces pour détecter les sites de fixation génomiques de la protéine d'intérêt 1,25,26. Cette méthode originale a été DamID limitée par la disponibilité de puces et la densité de sondes prédéterminées. Nous avons donc intégré séquençage à haut débit dansà DamID 10 et désigné la méthode que DamID-seq. Le grand nombre de courte lectures généré à partir DamID-seq permet une localisation précise des interactions protéine-ADN pangénomique. Nous avons constaté que DamID-seq fourni une résolution plus élevée et une plage dynamique plus large que DamID par microarray pour l'étude du génome nucléaire lamina (NL) 10 associations. Cette méthode permet une meilleure sonder les associations NL au sein des structures de gènes 10 et facilite les comparaisons avec d'autres données de séquençage à haut débit, tels que ChIP-seq et de l'ARN-Seq.

Le protocole DamID-seq décrit ici a été initialement développé pour la cartographie du génome NL 10 associations. Nous avons généré une protéine de fusion de souris ou attacher Lamin B1 humaine à E. coli ADN adénine méthyltransférase et testé le protocole 3T3 souris fibroblastes embryonnaires, C2C12 myoblastes de souris 10 et IRM90 fibroblastes pulmonaires de foetus humain (données non publiées). Dans ce protocole, nous commençons avec constructing vecteurs et exprimant Dam-captifs protéines de fusion par l'infection lentiviral dans des cellules mammifères 24. Ensuite, nous décrivons les protocoles détaillés de l'amplification de fragments d'ADN adénine-méthylé et de préparer des bibliothèques de séquençage qui devraient être applicables dans d'autres organismes.

Protocol

1. Génération et expression de protéines de fusion et Dam gratuit Protéines Clone protéines d'intérêt dans le vecteur DamID. Amplifier l'ADNc de protéine d'intérêt (POI) à l'aide de la haute fidélité de l'ADN polymerase et des amorces appropriées souhaitée selon le protocole du fabricant. Expérimentalement déterminer les conditions d'amplification optimales pour assurer une bonne amplification des inserts. Exécuter un gel d'agar…

Representative Results

La protéine de fusion Dam-V5-LMNB1 a été vérifiée pour être co-localisé avec le protéine endogène Lamin B par immunofluorescence (Figure 1). L'amplification par PCR réussie de fragments d'ADN adénine-méthylé est une étape clé pour DamID-seq. Les échantillons expérimentaux devraient amplifier un frottis de 0,2 – 2 ko, tandis que les contrôles négatifs (sans Dpnl, sans ligase ou sans m…

Discussion

Whether Dam-tagged proteins retain the functions of endogenous proteins should be examined before a DamID-seq experiment. The subcellular localization of Dam-tagged nuclear envelope proteins should always be determined and compared with that of the endogenous proteins. For studying transcription factors, it is suggested to examine whether the Dam-fusion protein can rescue the functions of the endogenous protein in regulating gene expression. This functional test can be performed in organisms in which knockout mutants of …

Divulgations

The authors have nothing to disclose.

Acknowledgements

We thank Dr. Bas van Steensel for providing the DamID mammalian expression vectors. We thank Yale Center for Genome Analysis and the Genomics Core in Yale Stem Cell Center for advice on preparing NGS libraries and implementing high throughput DNA sequencing. This work was supported by the startup funding from Yale School of Medicine, a Scientist Development Grant from American Heart Association (12SDG11630031) and a Seed Grant from Connecticut Innovations, Inc. (13-SCA-YALE-15).

Materials

ViraPower Lentiviral Expression Systems Life Technologies K4950-00, K4960-00, K4970-00, K4975-00, K4980-00, K4985-00, K4990-00, K367-20, K370-20, and K371-20
Gateway BP Clonase II Enzyme Mix Life Technologies 11789-020
Gateway LR Clonase II Enzyme Mix Life Technologies 11791-020
DNeasy Blood & Tissue Kit (250) QIAGEN 69506 or 69504  
Gateway pDONR 201 Life Technologies 11798-014
293T cells American Type Culture Collection CRL-11268
Trypsin-EDTA (0.05%), phenol red Life Technologies 25300-054
DMEM, high glucose, pyruvate Life Technologies 11995-065
Fetal Bovine Serum Sigma F4135
Tris brand not critical
EDTA brand not critical
200 Proof EtOH brand not critical
Isopropanol brand not critical
Sodium Acetate brand not critical
DpnI New England Biolabs R0176 supplied with buffer
DamID adaptors "AdRt" and "AdRb" Integrated DNA Technologies sequences available in ref. 24; no phosphorylation of the 5' or 3' end to prevent self-ligation.
T4 DNA Ligase Roche Life Science 10481220001 supplied with buffer
DpnII New England Biolabs R0543 supplied with buffer
DamID PCR primer "AdR_PCR" Integrated DNA Technologies sequences available in ref. 24
Deoxynucleotide (dNTP) Solution Set New England Biolabs N0446 100 mM each of dATP, dCTP, dGTP and dTTP
Advantage 2  Polymerase Mix Clontech 639201 supplied with buffer
1Kb Plus DNA Ladder Life Technologies 10787018 1.0 µg/µl
QIAquick PCR Purification Kit QIAGEN 28104 or 28106
MinElute PCR Purification Kit QIAGEN 28004 or 28006 for an elution volume of less than 30 µl
SPRI beads / Agencourt AMPure XP Beckman Coulter A63880 apply extra mixing and more elution time if less than 40 µl elution buffer is used
Buffer EB QIAGEN 19086
NEBNext dsDNA Fragmentase New England Biolabs M0348 supplied with buffer
T4 DNA Ligase Reaction Buffer New England Biolabs B0202
T4 DNA Polymerase New England Biolabs M0203
DNA Polymerase I, Large (Klenow) Fragment New England Biolabs M0210
T4 Polynuleotide Kinase New England Biolabs M0201
Klenow Fragment (3’ -> 5’ exo-) New England Biolabs M0212 supplied with buffer
sequencing adaptors Integrated DNA Technologies sequences available in ref. 28
Quick Ligation Kit New England Biolabs M2200 used in 11.2; supplied with Quick Ligation Reaction Buffer and Quick T4 DNA Ligase
sequencing primer 1 and 2 Integrated DNA Technologies sequences available in ref. 28
KAPA HiFi PCR Kit Kapa Biosystems KK2101 or KK2102 supplied with KAPA HiFi DNA Polymerase, 5X KAPA HiFi Fidelity Buffer and 10mM dNTP mix
agarose Sigma Aldrich A4679
ethidium bromide Sigma Aldrich E1510-10ML 10 mg/ml
QIAquick Gel Extraction Kit QIAGEN 28704 or 28706
iTaq Universal SYBR Green Supermix Bio-Rad Laboratories 1725121 or 1725122
Spectrophotometer brand not critical
0.45 um PVDF Filter brand not critical
25 ml Seringe brand not critical
10 cm Tissue Culture Plates brand not critical
6-well Tissue Culture Plates brand not critical
S1000 Thermal Cycler Bio-Rad Laboratories
C1000 Touch Thermal Cycler Bio-Rad Laboratories for qPCR
Vortex Mixer brand not critical
Dry Block Heater or Thermomixer brand not critical
Microcentrifuge brand not critical
Gel electrophoresis system with power supply brand not critical
Magnet stand for purification of DNA with SPRI beads; should hold 1.5-2 ml tubes; brand not critical
UV transilluminator brand not critical
E-gel electrophoresis system Life Technologies G6400, G6500, G6512ST

References

  1. van Steensel, B., Delrow, J., & Henikoff, S. Chromatin profiling using targeted DNA adenine methyltransferase. Nat Genet. 27, 304-308, (2001).
  2. van Steensel, B., & Henikoff, S. Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nat Biotechnol. 18, 424-428, (2000).
  3. Fu, A. Q., & Adryan, B. Scoring overlapping and adjacent signals from genome-wide ChIP and DamID assays. Mol Biosyst. 5, 1429-1438, (2009).
  4. Guelen, L. et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature. 453, 948-951, (2008).
  5. Kalverda, B., Pickersgill, H., Shloma, V. V., & Fornerod, M. Nucleoporins directly stimulate expression of developmental and cell-cycle genes inside the nucleoplasm. Cell. 140, 360-371, (2010).
  6. Kubben, N. et al. Mapping of lamin A- and progerin-interacting genome regions. Chromosoma. 121, 447-464, (2012).
  7. Steglich, B., Filion, G. J., van Steensel, B., & Ekwall, K. The inner nuclear membrane proteins Man1 and Ima1 link to two different types of chromatin at the nuclear periphery in S. pombe. Nucleus. 3, 77-87, (2012).
  8. Harr, J. C. et al. Directed targeting of chromatin to the nuclear lamina is mediated by chromatin state and A-type lamins. J Cell Biol. 208, 33-52, (2015).
  9. Gonzalez-Aguilera, C. et al. Genome-wide analysis links emerin to neuromuscular junction activity in Caenorhabditis elegans. Genome Biol. 15, R21, (2014).
  10. Wu, F., & Yao, J. Spatial compartmentalization at the nuclear periphery characterized by genome-wide mapping. BMC Genomics. 14, 591, (2013).
  11. Filion, G. J. et al. Systematic protein location mapping reveals five principal chromatin types in Drosophila cells. Cell. 143, 212-224, (2010).
  12. Vogel, M. J. et al. Human heterochromatin proteins form large domains containing KRAB-ZNF genes. Genome Res. 16, 1493-1504, (2006).
  13. Venkatasubrahmanyam, S., Hwang, W. W., Meneghini, M. D., Tong, A. H., & Madhani, H. D. Genome-wide, as opposed to local, antisilencing is mediated redundantly by the euchromatic factors Set1 and H2A.Z. Proc Natl Acad Sci U S A. 104, 16609-16614, (2007).
  14. Shimbo, T. et al. MBD3 localizes at promoters, gene bodies and enhancers of active genes. PLoS Genet. 9, e1004028, (2013).
  15. Orian, A. et al. Genomic binding by the Drosophila Myc, Max, Mad/Mnt transcription factor network. Genes Dev. 17, 1101-1114, (2003).
  16. Artegiani, B. et al. Tox: a multifunctional transcription factor and novel regulator of mammalian corticogenesis. EMBO J., (2014).
  17. Schuster, E. et al. DamID in C. elegans reveals longevity-associated targets of DAF-16/FoxO. Mol Syst Biol. 6, 399, (2010).
  18. Bianchi-Frias, D. et al. Hairy transcriptional repression targets and cofactor recruitment in Drosophila. PLoS Biol. 2, E178, (2004).
  19. Woolcock, K. J., Gaidatzis, D., Punga, T., & Buhler, M. Dicer associates with chromatin to repress genome activity in Schizosaccharomyces pombe. Nat Struct Mol Biol. 18, 94-99, (2011).
  20. Luo, S. D., Shi, G. W., & Baker, B. S. Direct targets of the D. melanogaster DSXF protein and the evolution of sexual development. Development. 138, 2761-2771, (2011).
  21. Germann, S., & Gaudin, V. Mapping in vivo protein-DNA interactions in plants by DamID, a DNA adenine methylation-based method. Methods Mol Biol. 754, 307-321, (2011).
  22. Zhang, X. et al. The Arabidopsis LHP1 protein colocalizes with histone H3 Lys27 trimethylation. Nat Struct Mol Biol. 14, 869-871, (2007).
  23. Orian, A. Chromatin profiling, DamID and the emerging landscape of gene expression. Curr Opin Genet Dev. 16, 157-164, (2006).
  24. Vogel, M. J., Peric-Hupkes, D., & van Steensel, B. Detection of in vivo protein-DNA interactions using DamID in mammalian cells. Nat Protoc. 2, 1467-1478, (2007).
  25. Greil, F., Moorman, C., & van Steensel, B. DamID: mapping of in vivo protein-genome interactions using tethered DNA adenine methyltransferase. Methods Enzymol. 410, 342-359, (2006).
  26. de Wit, E., Greil, F., & van Steensel, B. Genome-wide HP1 binding in Drosophila: developmental plasticity and genomic targeting signals. Genome Res. 15, 1265-1273, (2005).
  27. DamID mammalian vectors, <http://research.nki.nl/vansteensellab/Mammalian_plasmids.htm>, (2015).
  28. Illumina TruSeq adaptors & PCR primers, <https://ethanomics.wordpress.com/chip-seq-library-construction-using-the-illumina-truseq-adapters/>, (2015).
  29. Optimization of PCR cycles for NGS, <https://ethanomics.wordpress.com/ngs-pcr-cycle-quantitation-protocol/>, (2015).
  30. Bernstein, B. E. et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat Biotechnol. 28, 1045-1048, (2010).
  31. Encode Project Consortium. A user's guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol. 9, e1001046, (2011).
  32. Asp, P. et al. Genome-wide remodeling of the epigenetic landscape during myogenic differentiation. Proc Natl Acad Sci U S A. 108, E149-158, (2011).
  33. Hoppe, P. S., Coutu, D. L., & Schroeder, T. Single-cell technologies sharpen up mammalian stem cell research. Nat Cell Biol. 16, 919-927, (2014).
  34. Avital, G., Hashimshony, T., & Yanai, I. Seeing is believing: new methods for in situ single-cell transcriptomics. Genome Biol. 15, 110, (2014).
  35. Navin, N. E. Cancer genomics: one cell at a time. Genome Biol. 15, 452, (2014).
  36. Saliba, A. E., Westermann, A. J., Gorski, S. A., & Vogel, J. Single-cell RNA-seq: advances and future challenges. Nucleic Acids Res. 42, 8845-8860, (2014).
  37. Nagano, T. et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature. 502, 59-64, (2013).
  38. Kind, J. et al. Single-cell dynamics of genome-nuclear lamina interactions. Cell. 153, 178-192, (2013).
  39. Southall, T. D. et al. Cell-type-specific profiling of gene expression and chromatin binding without cell isolation: assaying RNA Pol II occupancy in neural stem cells. Dev Cell. 26, 101-112,  (2013).
check_url/fr/53620?article_type=t

Play Video

Citer Cet Article
Wu, F., Olson, B. G., Yao, J. DamID-seq: Genome-wide Mapping of Protein-DNA Interactions by High Throughput Sequencing of Adenine-methylated DNA Fragments. J. Vis. Exp. (107), e53620, doi:10.3791/53620 (2016).

View Video