Summary

Protocolo de Eletroquímica Teste e Caracterização de aprótico Li-O<sub> 2</sub> bateria

Published: July 12, 2016
doi:

Summary

A protocol for the electrochemical testing of an aprotic Li-O2 battery with the preparation of electrodes and electrolytes and an introduction of the frequently used methods of characterization is presented here.

Abstract

We demonstrate a method for electrochemical testing of an aprotic Li-O2 battery. An aprotic Li-O2 battery is made of a Li-metal anode, an aprotic electrolyte, and an O2-breathing cathode. The aprotic electrolyte is a solution of lithium salt with aprotic solvent; and porous carbon is commonly used as the cathode substrate. To improve the performance, an electrocatalyst is deposited onto the porous carbon substrate by certain deposition methods, such as atomic layer deposition (ALD) and wet-chemistry reaction. The as-prepared cathode materials are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray absorption near edge structure (XANES). A Swagelok-type cell, sealed in a glass chamber filled with pure O2, is used for the electrochemical test on a battery test system. The cells are tested under either capacity-controlled mode or voltage controlled mode. The reaction products are investigated by electron microscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, and Raman spectroscopy to study the possible pathway of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). This protocol demonstrates a systematic and efficient arrangement of routine tests of the aprotic Li-O2 battery, including the electrochemical test and characterization of battery materials.

Introduction

Em 1996, Abraham e Jiang 1 relatou o primeiro não aquoso Li-O 2 bateria reversível que consiste em um cátodo poroso de carbono, um eletrólito orgânico, e um ânodo de Li-metal. Desde então, devido ao seu extremamente alta densidade de energia teórica superior a de qualquer outro sistema de armazenamento de energia existentes, a bateria de Li-O 2, que induz um fluxo de corrente através da oxidação de lítio no ânodo e de redução do oxigénio no cátodo ( Li reação global + + O 2 + e ↔ Li 2 O 2), tem recebido um interesse significativo recentemente 1-8.

Um material de cátodo com os seguintes requisitos seria capaz de atender às necessidades de alta performance de Li-O 2 da bateria: (1) a difusão de oxigênio rápido; (2) boa condutividade elétrica e iônica; (3) área superficial específica elevada; e (4) estabilidade. Tanto a área de superfície e porosidade do cátodo é crítico para o. eficácia electroquímica de Li-O 2 baterias 9-12 A estrutura porosa permite a deposição de produtos de descarga de sólidos gerados a partir da reacção de Li catiões com O2; e áreas de superfície maiores fornecem locais mais activos para acomodar partículas eletrocatalíticas que aceleram as reações eletroquímicas. Tais electrocatalisadores são adicionados ao material do cátodo por certos métodos de deposição, que proporcionam uma forte adesão ao substrato e um bom controlo das partículas de catalisador, com preservação da estrutura de superfície porosa original do substrato. 13-17 Os materiais como preparadas são testados em células Swagelok do tipo como o cátodo de aprótico bateria Li-o 2. No entanto, o desempenho da célula não só depende da natureza dos materiais de cátodo, mas também do tipo de electrólito aprótico 18-22 e ânodo Li-metal. 23-26 Mais influências incluem a quantidade e concentração dos materiais ea pPROCEDIMENTO utilizado nos testes de carga / descarga. condições e protocolos adequados iria otimizar e melhorar o desempenho geral de materiais de bateria.

Para além dos resultados do teste electroquímico, o desempenho da bateria pode ser também avaliada pela caracterização dos materiais cristalinos e os produtos de reacção. 27-33 microscopia electrónica de varredura (SEM) é usado para investigar a microestrutura de superfície do material do cátodo e a morfologia evolução dos produtos de descarga. A microscopia electrónica de transmissão (TEM), absorção de raios-X perto estrutura da extremidade (XANES), e espectroscopia de fotoelectrão de raios-X (XPS) pode ser usado para determinar a ultra-estrutura, estado químico, e o componente de elementos, especialmente para a de nanopartículas de catalisador. De alta energia de difracção de raios-X (XRD) é utilizada para identificar directamente os produtos de descarga cristalino. decomposição possível electrólito pode ser determinada por Fourier de reflexão total atenuada transformadaInfravermelhos (ATR-FTIR) e espectros de Raman.

Este artigo é um protocolo que demonstra uma disposição sistemática e eficiente de testes de rotina do aprótico bateria Li-O 2, incluindo a preparação de materiais de bateria e acessórios, o teste de desempenho eletroquímico, e caracterização de materiais virgens e produtos de reacção. O protocolo de vídeo detalhada destina-se a ajudar os novos profissionais da área a evitar muitas armadilhas comuns associados com o teste de desempenho e caracterização de Li-S 2 baterias.

Protocol

Por favor, consultar todas as Fichas de Dados de Segurança do Material relevantes (MSDS) antes do uso. Muitos dos produtos químicos usados ​​nestas sínteses são altamente tóxicos e cancerígenos. Nanomateriais podem ter riscos adicionais em comparação com o seu homólogo granel. Por favor, use todas as práticas de segurança adequadas ao executar uma reação nanocristais incluindo o uso de controles de engenharia (exaustor, glovebox) e equipamentos de proteção individual (óculos de segurança, luvas, jal…

Representative Results

Figura 1a mostra a configuração da célula Swagelok-tipo do teste de bateria Li-O 2. Um pedaço de película de lítio é colocado sobre uma haste de aço inoxidável na extremidade do ânodo. O cátodo poroso é aberta para O2 puro através de um tubo de alumínio. A fibra de vidro é usado como um separador e um absorvedor de electrólito aprótico; e Al-malha é usado como uma corrente de colector. Toda a célula-tipo Swagelok é selado numa c?…

Discussion

Considerando a sensibilidade do sistema de baterias de Li-O 2 para o ar, especialmente CO2 e humidade, em muitos passos do protocolo são necessárias a fim de reduzir os interferentes e para evitar reacções secundárias. Por exemplo, a célula-tipo Swagelok é montado numa caixa de luvas cheia com Ar com O 2 <0,5 ppm e H2O <0,5 ppm; e todos os materiais de cátodo, solvente e electrólito de sal, fibra de vidro, peças Swagelok, e as câmaras de vidro são secos antes…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Research at Argonne National Laboratory was funded by U.S. Department of Energy, FreedomCAR and Vehicle Technologies Office. Use of the Advanced Photon Source and research carried out in the Electron Microscopy Center at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Materials

1-Methyl-2-pyrrolidinone (NMP), 99.5% Sigma-Aldrich 328634
Battery test system MACCOR Series 4000 Automated Test System
Dimethyl carbonate (DMC), ≥99% Sigma-Aldrich 517127
Ethyl alcohol, ≥99.5% Sigma-Aldrich 459844
Formaldehyde solution, 37 wt. % in H2O Sigma-Aldrich 252549
Graphitized Carbon black, >99.95% Sigma-Aldrich 699632
Iron(III) chloride (FeCl3), 97% Sigma-Aldrich 157740
Kapton polyimide tubing Cole-Parmer EW-95820-09
Kapton polymide tape Cole-Parmer EW-08277-80
Kapton window film SPEX Sample Prep 3511
Lithium Chip (99.9% Lithium) MTI Corporation EQ-Lib-LiC25
Lithium trifluoromethanesulfonate (LiCF3SO3) Sigma-Aldrich 481548
Palladium hexafluoroacetylacetonate (Pd(hfac)2), 99.9% Aldrich 401471
Poly(vinylidene fluoride) (PVDF) Aldrich 182702
Potassium permanganate (KMnO4), ≥99.0%  Sigma-Aldrich 223468
Sodium hydroxide (NaOH), ≥97.0% Sigma-Aldrich 221465
Tetraethylene glycol dimethyl ether (TEGDME), ≥99% Aldrich 172405
Toray 030 carbon paper ElectroChem Inc. 590637

References

  1. Abraham, K. M., & Jiang, Z. A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 143, 1-5 (1996).
  2. Bruce, P. G., Freunberger, S. A., Hardwick, L. J., & Tarascon, J.-M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11, 19-29 (2012).
  3. Lu, J. et al. Aprotic and Aqueous Li-O2 Batteries. Chem. Rev. 114, 5611-5640 (2014).
  4. Black, R., Adams, B., & Nazar, L. F. Non-Aqueous and Hybrid Li-O2 Batteries. Adv. Energy Mater. 2, 801-815 (2012).
  5. Bruce, P. G., Hardwick, L. J., & Abraham, K. M. Lithium-air and lithium-sulfur batteries. MRS Bull. 36, 506-512 (2011).
  6. Christensen, J. et al. A Critical Review of Li/Air Batteries. J. Electrochem. Soc. 159, R1-R30 (2012).
  7. Girishkumar, G., McCloskey, B., Luntz, A. C., Swanson, S., & Wilcke, W. Lithium-Air Battery: Promise and Challenges. J. Phys. Chem. Lett. 1, 2193-2203 (2010).
  8. Lu, J., & Amine, K. Recent Research Progress on Non-aqueous Lithium-Air Batteries from Argonne National Laboratory. Energies. 6, 6016-6044 (2013).
  9. Ding, N. et al. Influence of carbon pore size on the discharge capacity of Li-O2 batteries. J. Mater. Chem. A 2, 12433 (2014).
  10. Nimon, V. Y., Visco, S. J., De Jonghe, L. C., Volfkovich, Y. M., & Bograchev, D. A. Modeling and Experimental Study of Porous Carbon Cathodes in Li-O2 Cells with Non-Aqueous Electrolyte. ECS Electrochem. Lett. 2, A33-A35 (2013).
  11. Ottakam Thotiyl, M. M., Freunberger, S. A., Peng, Z., & Bruce, P. G. The Carbon Electrode in Nonaqueous Li-O2 Cells. J. Am. Chem. Soc. 135, 494-500 (2012).
  12. Park, J.-B., Lee, J., Yoon, C. S., & Sun, Y.-K. Ordered Mesoporous Carbon Electrodes for Li-O2 Batteries. Acs Appl. Mater. Interfaces. 5, 13426-13431 (2013).
  13. Lei, Y. et al. Synthesis of porous carbon supported palladium nanoparticle catalysts by atomic layer deposition: application for rechargeable lithium-O2 battery. Nano Lett. 13, 4182-4189 (2013).
  14. Lu, J. et al. Effect of the size-selective silver clusters on lithium peroxide morphology in lithium-oxygen batteries. Nat. Commun. 5, 4895 (2014).
  15. Lu, J. et al. A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries. Nat. Commun. 4, 2383 (2013).
  16. Lu, J. et al. Synthesis and characterization of uniformly dispersed Fe3O4/Fe nanocomposite on porous carbon: application for rechargeable Li-O2 batteries. RSC Adv. 3, 8276-8285 (2013).
  17. Luo, X. et al. Pd nanoparticles on ZnO-passivated porous carbon by atomic layer deposition: an effective electrochemical catalyst for Li-O2 battery. Nanotechnology 26, 164003 (2015).
  18. Freunberger, S. A. et al. The Lithium-Oxygen Battery with Ether-Based Electrolytes. Angew. Chem. Int. Ed. 50, 8609-8613 (2011).
  19. Laoire, C. O., Mukerjee, S., Abraham, K. M., Plichta, E. J., & Hendrickson, M. A. Influence of Nonaqueous Solvents on the Electrochemistry of Oxygen in the Rechargeable Lithium-Air Battery. J. Phys. Chem. C. 114, 9178-9186 (2010).
  20. McCloskey, B. D., Bethune, D. S., Shelby, R. M., Girishkumar, G., & Luntz, A. C. Solvents' Critical Rope in Nonaqueous Lithium-Oxygen Battery Electrochemistry. J. Phys. Chem. Lett. 2, 1161-1166 (2011).
  21. Assary, R. S. et al. Molecular-Level Insights into the Reactivity of Siloxane-Based Electrolytes at a Lithium-Metal Anode. ChemPhysChem 15, 2077-2083 (2014).
  22. Du, P. et al. Compatibility of lithium salts with solvent of the non-aqueous electrolyte in Li-O2 batteries. Phys. Chem. Chem. Phys. 15, 5572-5581 (2013).
  23. Aleshin, G. Y. et al. Protected anodes for lithium-air batteries. Solid State Ion. 184, 62-64 (2011).
  24. Assary, R. S. et al. The Effect of Oxygen Crossover on the Anode of a Li-O2 Battery using an Ether-Based Solvent: Insights from Experimental and Computational Studies. ChemSusChem 6, 51-55 (2013).
  25. Aurbach, D., Zinigrad, E., Cohen, Y., & Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ion. 148, 405-416 (2002).
  26. Dey, A. N. Lithium Anode Film And Organic And Inorganic Electrolyte Batteries. Thin Solid Films. 43, 131-171 (1977).
  27. Lau, K. C., Lu, J., Luo, X., Curtiss, L. A., & Amine, K. Implications of the Unpaired Spins in Li-O2 Battery Chemistry and Electrochemistry: A Minireview. ChemPlusChem. 80, 336-343 (2015).
  28. Lau, K. C. et al. Theoretical Exploration of Various Lithium Peroxide Crystal Structures in a Li-Air Battery. Energies 8, 529-548 (2015).
  29. Black, R. et al. Screening for Superoxide Reactivity in Li-O2 Batteries: Effect on Li2O2/LiOH Crystallization. J. Am. Chem. Soc. 134, 2902-2905 (2012).
  30. Gallant, B. M. et al. Influence of Li2O2 morphology on oxygen reduction and evolution kinetics in Li-O2 batteries. Energy Environ. Sci. 6, 2518-2528 (2013).
  31. Lu, J. et al. Magnetism in Lithium-Oxygen Discharge Product. ChemSusChem 6, 1196-1202 (2013).
  32. Xu, J.-J., Wang, Z.-L., Xu, D., Zhang, L.-L., & Zhang, X.-B. Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries. Nat. Commun. 4, 2438 (2013).
  33. Zhong, L. et al. In Situ Transmission Electron Microscopy Observations of Electrochemical Oxidation of Li2O2. Nano Lett. 13, 2209-2214 (2013).
  34. Hitachi S-4700 SEM Training & Reference Guide. <http://chanl.unc.edu/files/2013/04/sem-user-guide_v1.pdf> (2015).
  35. Hitachi S4700 User Manual. <http://www.toyota-ti.ac.jp/Lab/Material/surface/naibu/SEM%20Hitachi%20S4700%20User%20Manual.doc.> (2015).
  36. Goldstein, J. et al. Scanning Electron Microscopy and X-ray Microanalysis. Springer: New York, NY (2003).
  37. Ray Photoelectron Spectrometer Operation Procedure. <https://nanofabrication.4dlabs.ca/uploads/documents/XPS_SOP.pdf> (2015).
  38. Haasch, R. T. in Practical Materials Characterization. (ed Mauro Sardela) Ch. 3, 93-132, Springer: New York, NY (2014).
  39. Field Emission Transmission Electron Microscope. <http://cmrf.research.uiowa.edu/files/cmrf.research.uiowa.edu/files/JEOL%202100%20User%20Instructions.pdf> (2015).
  40. Wen, J.-G. in Practical Materials Characterization. (ed Mauro Sardela) Ch. 5, 189-229, Springer: New York, NY (2014).
  41. Williams, D. B., & Carter, C. B. Transmission Electron Microscopy. Springer: New York, NY (2009).
  42. Beamline 11-ID-C: High-energy Diffraction Beamline. <http://www.aps.anl.gov/Beamlines/Directory/showbeamline.php?beamline_id=15> (2015).
  43. Beamline 11-ID-D: Sector 11 – Time Resolved X-ray Spectroscopy and Scattering. <http://www.aps.anl.gov/Beamlines/Directory/showbeamline.php?beamline_id=17> (2015).
  44. Sardela, M. R. in Practical Materials Characterization. (ed Mauro Sardela) Ch. 1, 1-41, Springer: New York, NY (2014).
  45. Beamline 9-BM-B,C: X-ray Absorption Spectroscopy Beamline. <http://www.aps.anl.gov/Beamlines/Directory/showbeamline.php?beamline_id=82> (2015).
  46. Beamline 20-BM-B: X-ray Absorption Spectroscopy Beamline. <http://www.aps.anl.gov/Beamlines/Directory/showbeamline.php?beamline_id=32> (2015).
  47. Bunker, G. Introduction to XAFS: A Practical Guide to X-ray Absorption Fine Structure Spectroscopy. Cambridge University Press, 1st edition. (2010).
  48. Nicolet FT-IR User's Guide. <http://chemistry.unt.edu/~verbeck/LIMS/Manuals/6700_User.pdf> (2015).
  49. Nicolet iS5 User Guide. <http://madisonsupport.thermofisher.com/Molecular&UV8/Nicolet%20iS5%20User%20Guide.pdf> (2015).
  50. Renishaw inVia Raman Microscope Training Notebook. <https://depts.washington.edu/ntuf/facility/docs/raman_training_rev2_120507.pdf> (2015).
  51. Renishaw InVia Quick Operation Summary. <https://www.ccmr.cornell.edu/sites/default/files/facilities%20equipment/Raman_Operation_Procedures_July_14_2014.pdf> (2015).
  52. Mitchell, R. R., Gallant, B. M., Thompson, C. V., & Shao-Horn, Y. All-carbon-nanofiber electrodes for high-energy rechargeable Li-O2 batteries. Energy Environ. Sci. 4, 2952-2958 (2011).
check_url/fr/53740?article_type=t

Play Video

Citer Cet Article
Luo, X., Wu, T., Lu, J., Amine, K. Protocol of Electrochemical Test and Characterization of Aprotic Li-O2 Battery. J. Vis. Exp. (113), e53740, doi:10.3791/53740 (2016).

View Video