Summary

Kvantificering af Protein Expression og Co-lokalisering Brug Multiplexed immunhistokemisk farvede og Multispektral Imaging

Published: April 08, 2016
doi:

Summary

Immunohistochemistry is a powerful lab technique for evaluating protein localization and expression within tissues. Current semi-automated methods for quantitation introduce subjectivity and often create irreproducible results. Herein, we describe methods for multiplexed immunohistochemistry and objective quantitation of protein expression and co-localization using multispectral imaging.

Abstract

Immunohistochemistry is a commonly used clinical and research lab detection technique for investigating protein expression and localization within tissues. Many semi-quantitative systems have been developed for scoring expression using immunohistochemistry, but inherent subjectivity limits reproducibility and accuracy of results. Furthermore, the investigation of spatially overlapping biomarkers such as nuclear transcription factors is difficult with current immunohistochemistry techniques. We have developed and optimized a system for simultaneous investigation of multiple proteins using high throughput methods of multiplexed immunohistochemistry and multispectral imaging. Multiplexed immunohistochemistry is performed by sequential application of primary antibodies with secondary antibodies conjugated to horseradish peroxidase or alkaline phosphatase. Different chromogens are used to detect each protein of interest. Stained slides are loaded into an automated slide scanner and a protocol is created for automated image acquisition. A spectral library is created by staining a set of slides with a single chromogen on each. A subset of representative stained images are imported into multispectral imaging software and an algorithm for distinguishing tissue type is created by defining tissue compartments on images. Subcellular compartments are segmented by using hematoxylin counterstain and adjusting the intrinsic algorithm. Thresholding is applied to determine positivity and protein co-localization. The final algorithm is then applied to the entire set of tissues. Resulting data allows the user to evaluate protein expression based on tissue type (ex. epithelia vs. stroma) and subcellular compartment (nucleus vs. cytoplasm vs. plasma membrane). Co-localization analysis allows for investigation of double-positive, double-negative, and single-positive cell types. Combining multispectral imaging with multiplexed immunohistochemistry and automated image acquisition is an objective, high-throughput method for investigation of biomarkers within tissues.

Introduction

Immunhistokemi (IHC) er en standard lab teknik til påvisning af protein i væv, og IHC stadig meget udbredt i både forskning og diagnostisk patologi. Evalueringen af ​​IHC farvning ofte semi-kvantitativ, indførelse potentiel skævhed i fortolkning af resultaterne. Der er udviklet mange semi-kvantitative metoder, der inkorporerer både farvning intensitet og farvning udstrækning til endelige diagnose 1-4. Andre systemer omfatter scorings intensitet og subcellulære lokalisering for bedre at lokalisere ekspressionen 5. Inkorporering af gennemsnitlige scores fra flere seere er ofte udnyttes for at minimere virkningerne af enkelt seer partiskhed 6. På trods af disse bestræbelser, subjektivitet i analysen stadig, især når en vurdering af omfanget af farvning 7. Protokol standardisering og minimere subjektivitet fra humant input er altafgørende for at skabe præcise, reproducerbare IHC resultater.

indhold "> Der er andre indstillinger udover IHC til bestemmelse protein ekspression i væv. Inden indstillingen forskning har immunhistokemi traditionelt blevet set som et middel til at undersøge proteinlokalisering 8, mens andre teknikker, såsom immunoblotting betragtes som guldstandard for at undersøge protein-ekspression . Bestemmelse væv eller celler rum-specifikke udtryk er svært uden at inkorporere avancerede teknikker såsom celle fraktionering eller laser capture mikrodissektion 9,10. brugen af fluorescerende antistoffer på væv slides tilbyder et rimeligt kompromis, men baggrunden autofluorescens grundet NADPH, lipofuscins, retikulære fibre, kollagen og elastin kan gøre nøjagtig kvantificering vanskelig 11.

Automatiseret beregningsmæssige patologi platforme er en lovende retning for mere objektiv kvantificering af patologi farvning 12-15. Kombinere Multispektralbilledteknik med væv microarraysletter high-throughput analyse af protein-ekspression i store stikprøvestørrelser. Med disse teknikker, analyse af protein co-lokalisering, farvning heterogenitet, og væv og subcellulære lokalisering er muligt, mens væsentligt reducere både iboende fordomme og nødvendige tid til analyse, mens returnering af data i en kontinuerlig snarere end kategorisk format 16. Derfor er formålet med denne undersøgelse var at demonstrere anvendeligheden af ​​og metode til at udføre multiplex immunhistokemi med analyse, ved hjælp af multispektral imaging software.

Denne protokol er skrevet til manuel, multiplex immunhistokemisk farvning af en enkelt vævssnit slide med fire optimerede monoklonale antistoffer. Som repræsentativt forsøg, er nukleare anti-kanin østrogenreceptor alfa (ERa) og androgen receptor (AR) multiplekset med membranbundet anti-muse CD147 og membranbundet anti-muse E-cadherin. Enhver antistof valg kan substituted for antistofferne anført heri, men hver kombination af antistoffer kræver separat optimering. Forbehandling for alle antistofferne skal være identiske. De AR og CD147-antistoffer bør optimeres individuelt og derefter som en cocktail. Hvert antistof påvises ved anvendelse af et biotin-fri polymer system og et af 4 unikke chromogener.

Protocol

BEMÆRK: Protokollen heri beskriver farvning og analyse af et væv microarray (TMA), tidligere 12,17,18 beskrevet. 4 um tyk TMA sektion blev opnået fra en paraffinblokken anvendelse af en standard mikrotom. BEMÆRK: En spektral bibliotek for de 4 chromogener og kontrastfarve bør oprettes for billedet kvantificering. For at gøre dette, skal den optimerede protokol for hvert enkelt antistof køres med én antistof pr dias, minus den endelige kontrastfarve. En femte objektglas skal farves med hæmatoxylin for at generere …

Representative Results

I figur 1 er træning udført på prostatavæv at segmentere billeder i epitel og stroma portioner, sammen med den ikke-vævsområderne. Ved at bruge epithelmembranen markør E-cadherin blev celle segmentering udført for at adskille kerne, cytoplasma og membran portioner, vist i figur 2. I et eksperiment brugte vi multipleksede IHC at undersøge ekspressionen og lokalisering af AR, ERa, E-cad…

Discussion

Anvendelsen af traditionelle immunhistokemi til evaluering proteinekspression er begrænset af subjektive, semikvantitative analysemetoder 22,23. Advance platforme er skabt til high-throughput analyse af biomarkør udtryk og lokalisering. Detaljeret segmentering af både væv og subcellulære rum giver brugerne mulighed for at studere biomarkør udtryk, lokalisering, og co-lokalisering med andre markører af interesse. I tidligere undersøgelser har vi vist anvendeligheden af IHC og Multispektralbilledteknik,…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Forfatterne takker University of Wisconsin Implementeringsforskning initiativer i Patologi laboratorium, delvist støttet af UW Patologisk Institut og Laboratoriet Medicin og UWCCC tilskud P30 CA014520, til brug af sine faciliteter og services.

Materials

Xylene Fisher Chemical X3F1GAL NFPA rating:Health – 2, Fire – 3 , Reactivity-0
Ethyl Alcohol-200 proof Fisher Scientific 4355223 NFPA rating:Health – 0, Fire – 3 , Reactivity-0
Tris Base Fisher Scientific BP152-500 NFPA rating:Health – 2, Fire – 0 , Reactivity-0
Tris Hydroxymethyl aminomethane HCl Fisher Scientific BP153-1 NFPA rating:Health – 2, Fire – 0 , Reactivity-0
Tween 20 Chem-Impex 1512 NFPA rating:Health – 0, Fire –1 , Reactivity-0
Phosphate-buffered saline Fisher Scientific BP2944-100 NFPA rating:Health – 1, Fire –0 , Reactivity-0
Peroxidazed Biocare Medical PX968 Avoid contact with skin and eyes. May cause skin irritation and eye damage.
Diva Decloaker  Biocare Medical DV2004 This product has been classified as non‐hazardous based on the physical  and/or  chemical nature and/or concentration of ingredients. 
Estrogen Receptor alpha Thermo Fisher Scientific-Labvision RM9101 Not classified as hazardous
Androgen Receptor SCBT sc-816 Not classified as hazardous
CD147 Biodesign P87535M Not classified as hazardous
E-cadherin Dako M3612 Not classified as hazardous
Renoir Red Andibody Diluent Biocare Medical PD904 It is specially designed to work with Tris-based antibodies
DeCloaking Chamber  Biocare Medical Model DC2002 Take normal precautions for using a pressure cooker
Barrier pen-Immuno Edge  Vector Labs H-4000
Denaturing Kit-Elution step Biocare Medical DNS001H Not classified as hazardous
Mach 2 Goat anti-Rabbit HRP Polymer Biocare Medical RHRP520 Not classified as hazardous
Mach 2 Goat anti-Rabbit AP Polymer Biocare Medical RALP525 Not classified as hazardous
Mach 2 Goat anti-Mouse HRP Polymer Biocare Medical M3M530 Not classified as hazardous
Betazoid DAB Chromogen Kit Biocare Medical BDB2004 1. DAB is known to be a suspected carcinogen.
2. Do not expose DAB components to strong light or direct sunlight.
3. Wear appropriate personal protective equipment and clothing.
4. DAB may cause sensitization of skin. Avoid contact with skin and eyes.
5. Observe all federal, state and local environmental regarding disposal
Warp Red Chromogen Kit Biocare Medical WR806 Corrosive. Acid that may cause skin irritation or eye damage. 
Vina Green Chromogen Kit Biocare Medical BRR807 Harmful if swallowed
Bajoran Purple Chromogen Kit Biocare Medical BJP807 Flammable liquid. Keep away from heat, flames and sparks. Harmful by ingestion or absorption. Avoid contact with skin or eyes, and avoid inhalation.
Cat Hematoxylin Biocare Medical CATHE Purple  solution  with  a  mild  acetic  acid  (vinegar)  scent.  May  be
 irritating  to  skin  or  eyes.  Avoid  contact  with  skin  and  eyes.  Avoid  ingestion.
XYL Mounting Media Richard Allen 8312-4 NFPA rating:Health – 2, Fire – 3 , Reactivity-0
1.5 Coverslips Fisher Brand 22266858 Sharp edges
Incubation (Humidity)Chamber obsolete obsolete Multiple vendors available
Convection Oven Stabil- Therm C-4008-Q
Background Punisher Blocking Reagent Biocare Medical BP974 This product is not classified as hazardous. 
inForm software PerkinElmer CLS135781 Primary multispectral imaging software used in manuscript
Nuance software PerkinElmer NUANCEEX Software used for making spectral libraries within manuscript
Vectra microscope and slide scanner PerkinElmer VECTRA Automated slide scanner and microscope for obtaining IM3 image cubes

References

  1. Valdman, A., et al. Expression of redox pathway enzymes in human prostatic tissue. Anal Quant Cytol Histol. 31 (6), 367-374 (2009).
  2. Rimm, D. L., Camp, R. L., Charette, L. A., Olsen, D. A., Provost, E. Amplification of tissue by construction of tissue microarrays. Exp Mol Pathol. 70 (3), 255-264 (2001).
  3. Jonmarker, S., et al. Expression of PDX-1 in prostate cancer, prostatic intraepithelial neoplasia and benign prostatic tissue. APMIS. 116 (6), 491-498 (2008).
  4. McCarty, K. S., Miller, L. S., Cox, E. B., Konrath, J., McCarty, K. S. Estrogen receptor analyses. Correlation of biochemical and immunohistochemical methods using monoclonal antireceptor antibodies. Arch Pathol Lab Med. 109 (8), 716-721 (1985).
  5. Volante, M., et al. Somatostatin receptor type 2A immunohistochemistry in neuroendocrine tumors: a proposal of scoring system correlated with somatostatin receptor scintigraphy. Mod Pathol. 20 (11), 1172-1182 (2007).
  6. Muris, J. J., et al. Immunohistochemical profiling of caspase signaling pathways predicts clinical response to chemotherapy in primary nodal diffuse large B-cell lymphomas. Blood. 105 (7), 2916-2923 (2005).
  7. Jaraj, S. J., et al. Intra- and interobserver reproducibility of interpretation of immunohistochemical stains of prostate cancer. Virchows Arch. 455 (4), 375-381 (2009).
  8. Nakane, P. K., Pierce, G. B. Enzyme-labeled antibodies: preparation and application for the localization of antigens. J Histochem Cytochem. 14 (12), 929-931 (1966).
  9. Peters, T. J. Investigation of tissue organelles by a combination of analytical subcellular fractionation and enzymic microanalysis: a new approach to pathology. J Clin Pathol. 34 (1), 1-12 (1981).
  10. Emmert-Buck, M. R., et al. Laser Capture Microdissection. Science. 274 (5289), 998-1001 (1996).
  11. Waters, J. C. Accuracy and precision in quantitative fluorescence microscopy. J Cell Biol. 185 (7), 1135-1148 (2009).
  12. Huang, W., Hennrick, K., Drew, S. A colorful future of quantitative pathology: validation of Vectra technology using chromogenic multiplexed immunohistochemistry and prostate tissue microarrays. Hum Pathol. 44 (1), 29-38 (2013).
  13. Rimm, D. L. C-Path: A Watson-Like Visit to the Pathology Lab. Science Translational Medicine. 3 (108), (2011).
  14. Fiore, C., et al. Utility of multispectral imaging in automated quantitative scoring of immunohistochemistry. J Clin Pathol. 65 (6), 496-502 (2012).
  15. Stack, E. C., Wang, C., Roman, K. A., Hoyt, C. C. Multiplexed immunohistochemistry, imaging, and quantitation: A review, with an assessment of Tyramide signal amplification, multispectral imaging and multiplex analysis. Methods. 70 (1), 46-58 (2014).
  16. Rizzardi, A. E., et al. Quantitative comparison of immunohistochemical staining measured by digital image analysis versus pathologist visual scoring. Diagn Pathol. 7, 42 (2012).
  17. Bauman, T. M., et al. Characterization of fibrillar collagens and extracellular matrix of glandular benign prostatic hyperplasia nodules. PLoS One. 9 (10), e109102 (2014).
  18. Bauman, T. M., et al. Beta-catenin is elevated in human benign prostatic hyperplasia specimens compared to histologically normal prostate tissue. Am J Clin Exp Urol. 2 (4), 313-322 (2014).
  19. Bauman, T. M., Ewald, J. A., Huang, W., Ricke, W. A. CD147 expression predicts biochemical recurrence after prostatectomy independent of histologic and pathologic features. BMC Cancer. 15 (1), 549 (2015).
  20. Bauman, T. M., et al. Finasteride treatment alters tissue specific androgen receptor expression in prostate tissues. Prostate. 74 (9), 923-932 (2014).
  21. Nicholson, T. M., Sehgal, P. D., Drew, S. A., Huang, W., Ricke, W. A. Sex steroid receptor expression and localization in benign prostatic hyperplasia varies with tissue compartment. Differentiation. 85 (4-5), 140-149 (2013).
  22. Taylor, C. R., Levenson, R. M. Quantification of immunohistochemistry–issues concerning methods, utility and semiquantitative assessment II. Histopathology. 49 (4), 411-424 (2006).
  23. Matos, L. L., Trufelli, D. C., de Matos, M. G., da Silva Pinhal, M. A. Immunohistochemistry as an important tool in biomarkers detection and clinical practice. Biomark Insights. 5, 9-20 (2010).
  24. Kononen, J., et al. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med. 4 (7), 844-847 (1998).
  25. Ong, C. W., et al. Computer-assisted pathological immunohistochemistry scoring is more time-effective than conventional scoring, but provides no analytical advantage. Histopathology. 56 (4), 523-529 (2010).
check_url/fr/53837?article_type=t

Play Video

Citer Cet Article
Bauman, T. M., Ricke, E. A., Drew, S. A., Huang, W., Ricke, W. A. Quantitation of Protein Expression and Co-localization Using Multiplexed Immuno-histochemical Staining and Multispectral Imaging. J. Vis. Exp. (110), e53837, doi:10.3791/53837 (2016).

View Video