Summary

脂肪库专用SCA1的免疫磁性分离<sup>高</sup>脂肪干细胞(ASCs)

Published: August 11, 2016
doi:

Summary

We present the techniques required to isolate the stromal vascular fraction (SVF) from mouse inguinal (subcutaneous) and perigonadal (visceral) adipose tissue depots to assess their gene expression and collagenolytic activity. This method includes the enrichment of Sca1high adipose-derived stem cells (ASCs) using immunomagnetic cell separation.

Abstract

The isolation of adipose-derived stem cells (ASCs) is an important method in the field of adipose tissue biology, adipogenesis, and extracellular matrix (ECM) remodeling. In vivo, ECM-rich environment consisting of fibrillar collagens provides a structural support to adipose tissues during the progression and regression of obesity. Physiological ECM remodeling mediated by matrix metalloproteinases (MMPs) plays a major role in regulating adipose tissue size and function1,2. The loss of physiological collagenolytic ECM remodeling may lead to excessive collagen accumulation (tissue fibrosis), macrophage infiltration, and ultimately, a loss of metabolic homeostasis including insulin resistance3,4. When a phenotypic change of the adipose tissue is observed in gene-targeted mouse models, isolating primary ASCs from fat depots for in vitro studies is an effective approach to define the role of the specific gene in regulating the function of ASCs. In the following, we define an immunomagnetic separation of Sca1high ASCs.

Introduction

干细胞抗原-1(SCA1,或Ly6A / E)最初被鉴定为通过造血细胞和间质干细胞5,6-表达的细胞表面标记。从小鼠脂肪库获得脂肪组织的基质血管级分(SVF)为含有成纤维细胞,巨噬细胞,血管内皮细胞,神经细胞,以及脂肪细胞祖细胞7的细胞的异质群体。脂肪细胞祖细胞,或脂肪干细胞(ASCs)是驻留在富含胶原蛋白的血管周围的细胞外基质(ECM)8非载脂细胞。大约SVF的50%由携带者,其特点为谱系阴性(林– )和CD29 +:CD34 +:SCA1 + 9。大多数这些细胞是SCA1 +:CD24 脂肪细胞祖细胞,其能够在体外脂肪细胞分化的;然而,只有细胞的级分(SVF的0.08%)构成SCA1 <sUP> +:CD24 +细胞完全有能力和增殖分化为体内条件下9脂肪细胞。尽管使用SCA1 + SVF不脱离CD24识别CD24 +细胞的电位警告的细胞,分离SCA1 +的ASC从用免疫细胞分离脂肪库是一种高效,实用的方法,以确定主脂肪细胞祖细胞的细胞自主表型。

在肥胖和糖尿病,组织纤维化和炎症的领域发挥在2型糖尿病3的开发和维护的关键作用。最近,德永等人 。表明,腹股沟(或皮下,SQ)和perigonadal(或内脏,VIS)隔离SCA1 细胞C57BL6 / J脂肪库表现出体外 10个不同基因签名和ECM重塑。 MMP14(MT1-MMP),膜 – t的典型构件YPE基质金属蛋白酶(MMP)家族通过其原活性1介导的白色脂肪组织(WAT)的开发。

可与分离和富集通过以下方案中的细胞进行的实验的例子包括三维培养,分化研究,胶原降解测定法,和RNA测序10,11。降解测定法应与酸提取胶原进行,以确保端肽11,12的保存。下面的协议将演示方法主要血管基质细胞从不同的脂肪库分离和使用免疫细胞分离脂肪细胞丰富的祖细胞。在细胞分选的有效性将用流式细胞仪,并通过使用SCA1-GFP小鼠表达SCA1 +细胞GFP,由SCA1启动子驱动13进行评估。

Protocol

伦理学声明:密歇根委员会对动物的使用和注意事项大学(UCUCA)已批准按照指南实验动物的护理和使用(学院实验动物研究,国家研究理事会)的所有方法和协议。小鼠均保持在密歇根大学的动物饲养,并给予食物和水自由进入并保持在12小时黑暗/光照周期。 1.准备制备原代培养介质用DMEM,10%FBS,1×P / S / G,和1x抗生素/抗真菌剂。这将被用来保持组织中之前消化?…

Representative Results

从不同的脂肪垫SCA1 高的ASC的富集。 从SQ脂肪显示成纤维样分离出来的血管间质细胞,拉伸细胞形态,无论SCA1表达水平( 图1A)。另一方面,VIS(eWAT衍生)SCA1 高和SCA1 低细胞证明其细胞形态明显的差异。像SQ(iWAT衍生)SCA1 高细胞,VIS(eWAT衍生)SCA1 高细胞显示拉伸,成?…

Discussion

在此,我们展示了隔离,并从不同的脂肪垫鼠携带者的免疫细胞分离和体外实验。所提出的方法是有效的的大量SCA1阳性的ASC的,这是过度的ASC 9,14的技术复杂和昂贵的FACS介导的隔离有利的快速隔离。不像FACS,免疫细胞分离不允许靶细胞群体的鉴定使用多个抗原。然而,如果表面抗原表征良好,利用免疫磁性分离的增加不依赖于使用的FACS设备15,其仍然不小院所许多生物学?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

这项工作是由美国国立卫生研究院DK095137(THC到)的支持。我们感谢现任和前任实验室成员是谁所描述的方法的发展和成熟作出了贡献。

Materials

Type 3 Collagenase Worthington Biochemical LS004182 Tissue digestion
DMEM Gibco 11965-092 High-glucose culture medium
Pen/Strep/Glutamine (100x) Gibco 10378-016 Media antibiotic
Anti-anti (100x) Gibco 15240-062 Media antifungal
FBS Gibco 16000-044
PBS (1x, pH 7.4) Gibco 10010-023
Trypsin (0.05%) Gibco 25300-054
Cell strainer BD Bioscience 352360 100-μm cell strainer
60mm plates BD Falcon 353004
Scissors FST 14001-12 Large
Scissors FST 14091-11 Fine, curved tip
Large Forceps FST 11000-12
Fine Forceps Any vendor
25G 5/8” needles BD 305122
22G 1.5” needles BD 305159
15 ml conical tubes BD Falcon 352097
50 ml conical tubes BD Falcon 352098
MACS separation columns Miltenyi Biotec 130-042-201
Anti-Sca1 microbead kit (FITC) Miltenyi Biotec 130-092-529 FITC-anti-Sca1 1ºAb and anti-FITC microbeads 2ºAb
AutoMACS running buffer Miltenyi Biotec 130-091-221
MiniMACS separator Miltenyi Biotec 130-042-102
MACS MultiStand Miltenyi Biotec 130-042-303
Blue chux pads Fisher 276-12424
Absorbent pads Fisher 19-165-621
Styrofoam board Use from 50ml tubes
70% ethanol
Isoflurane Any vendor
Rat IgG2a Alexa Fluor 647 Invitrogen R2a21
Rat IgG2a anti-mouse Sca1 Alexa Fluor 647 Invitrogen MSCA21
Rat IgG2a R-PE Invitrogen R2a04
Rat IgG2a anti-mouse F4/80 R-PE Invitrogen MF48004
Round-bottom tube BD Falcon 352058
HBSS (–Ca, –Mg) Gibco 14175-095
HBSS (+Ca, +Mg) Gibco 14025-092 For collagenase solution
Type I collagen (2.7 mg/ml in 37mm acetic acid Prepare in house12
10x MEM Gibco 11430-030
1M HEPES Gibco 15630-080
0.34N NaOH Prepare in house
Cover slips Corning 2870-22
Alexa Fluor 594 carboxylic acid, succinimidyl ester, mixed isomers Invitrogen A-20004
0.89M NaHCO Gibco 25080-094

References

  1. Chun, T. H., et al. A pericellular collagenase directs the 3-dimensional development of white adipose tissue. Cell. 125 (3), 577-591 (2006).
  2. Chun, T. H., et al. Genetic link between obesity and MMP14-dependent adipogenic collagen turnover. Diabetes. 59 (10), 2484-2494 (2010).
  3. Chun, T. H. Peri-adipocyte ECM remodeling in obesity and adipose tissue fibrosis. Adipocyte. 1 (2), 89-95 (2012).
  4. Sun, K., Tordjman, J., Clement, K., Scherer, P. E. Fibrosis and adipose tissue dysfunction. Cell Metab. 18 (4), 470-477 (2013).
  5. Spangrude, G., Heimfeld, S., Weissman, I. Purification and Characterization of Mouse Hematopoietic Stem Cells. Science. 241, 58-62 (1988).
  6. Welm, B. E., et al. Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev Biol. 245 (1), 42-56 (2002).
  7. Gesta, S., Tseng, Y. H., Kahn, C. R. Developmental origin of fat: tracking obesity to its source. Cell. 131 (2), 242-256 (2007).
  8. Tang, W., Zeve, D., Suh, J. M., Bosnakovski, D., Kyba, M., Hammer, R. E., Tallquist, M. D., Graff, J. M. White fat progenitor cells reside in the adipose vasculature. Science. 322, 583-586 (2008).
  9. Rodeheffer, M. S., Birsoy, K., Friedman, J. M. Identification of white adipocyte progenitor cells in vivo. Cell. 135 (2), 240-249 (2008).
  10. Tokunaga, M., et al. Fat depot-specific gene signature and ECM remodeling of Sca1(high) adipose-derived stem cells. Matrix Biol. 36, 28-38 (2014).
  11. Chun, T. H., Inoue, M. 3-D adipocyte differentiation and peri-adipocyte collagen turnover. Methods Enzymol. 538, 15-34 (2014).
  12. Rajan, N., Habermehl, J., Cote, M. F., Doillon, C. J., Mantovani, D. Preparation of ready-to-use, storable and reconstituted type I collagen from rat tail tendon for tissue engineering applications. Nat Protoc. 1 (6), 2753-2758 (2006).
  13. Ma, X., Robin, C., Ottersbach, K., Dzierzak, E. The Ly-6A (Sca-1) GFP Transgene is Expressed in all Adult Mouse Hematopoietic Stem Cells. Stem Cells. 20 (6), 514-521 (2002).
  14. Berry, R., Rodeheffer, M. S. Characterization of the adipocyte cellular lineage in vivo. Nat Cell Biol. 15 (3), 302-308 (2013).
  15. Jeffery, E., Church, C. D., Holtrup, B., Colman, L., Rodeheffer, M. S. Rapid depot-specific activation of adipocyte precursor cells at the onset of obesity. Nat Cell Biol. 17 (4), 376-385 (2015).
  16. Mori, S., Kiuchi, S., Ouchi, A., Hase, T., Murase, T. Characteristic Expression of Extracellular Matrix in Subcutaneous Adipose Tissue Development and Adipogenesis; Comparison with Visceral Adipose Tissue. Int J Biol Sci. 10 (8), 825-833 (2014).
  17. Ong, W. K., et al. Identification of Specific Cell-Surface Markers of Adipose-Derived Stem Cells from Subcutaneous and Visceral Fat Depots. Stem Cell Reports. 2 (2), 171-179 (2014).

Play Video

Citer Cet Article
Barnes II, R. H., Chun, T. Immunomagnetic Separation of Fat Depot-specific Sca1high Adipose-derived Stem Cells (ASCs). J. Vis. Exp. (114), e53890, doi:10.3791/53890 (2016).

View Video