Summary

Получение коранулен-функционализированного Hexahelicene по меди (I) -catalyzed алкине-азида циклоприсоединения непланарной полиароматических единиц

Published: September 18, 2016
doi:

Summary

Здесь мы приводим протокол для синтеза сложного органического соединения, состоящего из трех неплоских полиароматических единиц, легко монтируется с разумным выходом.

Abstract

The main purpose of this video is to show 6 reaction steps of a convergent synthesis and prepare a complex molecule containing up to three nonplanar polyaromatic units, which are two corannulene moieties and a racemic hexahelicene linking them. The compound described in this work is a good host for fullerenes. Several common organic reactions, such as free-radical reactions, C-C coupling or click chemistry, are employed demonstrating the versatility of functionalization that this compound can accept. All of these reactions work for planar aromatic molecules. With subtle modifications, it is possible to achieve similar results for nonplanar polyaromatic compounds.

Introduction

Благодаря своей особой геометрии, коранулен и гелицены представляют собой молекулы , которые могут принять структуру далеко от плоскостности и рождают интересные свойства. В 1-15 За последние несколько лет, поиск молекулярных рецепторов для углеродных нанотрубок и фуллеренов является очень активной областью 16-19 в связи, главным образом, их потенциального применения в качестве материалов для органических солнечных батарей, транзисторов, датчиков и других устройств. 20-28 отличная взаимодополняемость в форме между коранулен и фуллерена привлекли внимание нескольких исследователей с целью проектирования молекулярные рецепторы , способные устанавливать ассоциацию супрамолекулярную дисперсионными силами. 29-39

Химизм указанных выше неплоских полиароматических соединений аналогично тому, как описано для полностью плоских молекул, но иногда трудно найти подходящие условия для достижения желаемых селективностью и урожайности. 40 </sup> В этой работе мы представляем синтез молекулы (7) , имеющей три полиароматических единиц в несколько шагов с хорошими выходами, применяя простые и типичные методы , найденные в каждой научно – исследовательской лаборатории. Молекула имеет большое значение , так как оно может принять Клещеобразный как конформацию , чтобы установить хорошие взаимодействия с С 60 37 в растворе; и он может открыть линии исследования в качестве потенциального рецептора для высших хиральных фуллерены благодаря helicene линкер, который является хиральной молекулы из – за существования стереогенном оси. 41-45 Тем не менее, только рацемическое helicene будет использоваться в данной работе.

На данный момент, единственным ограничением для синтеза этих рецепторов является приготовление ГЕЛИЦЕНЫ и corannulenes, так как они не являются коммерчески доступными. Но, в соответствии с новыми методами опубликованы в другом месте 46-48 они могут быть получены в подходящих количествах в разумных короткий период времени.

Protocol

1. Функционализация 2,15-Dimethylhexahelicene Dibromination из 2,15-dimethylhexahelicene Взвесить 0,356 г (1,0 ммоль) 2,15-dimethylhexahelicene, 0,374 г (2,1 ммоль) свеже перекристаллизовывают N -bromosuccinimide (NBS) и 24 мг (0,07 ммоль) перекиси бензоила (ВРО) (70% мас с 30% вода в качестве стабилизатора). Поместите все т…

Representative Results

Коранулен (3 а) и 2,15-dimethylhexahelicene (3 б) могут быть получены в соответствии текущими методами 46-48 в простой моды с очень хорошими выходами (рисунок 5). Оба имеют общую молекулу, 2,7-диметилнафталин, в качестве исходного матери…

Discussion

Окончательное соединение 7 было подготовлено после того, как 6 шагов от неплоских полиароматических предшественников 3 и 3b с умеренной до очень хорошими выходами при каждой реакции. Основное ограничение наблюдалось в этом маршруте была бромировани?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

This work was funded by the Spanish Ministerio de Economìa y Competitividad (CTQ 2013-41067-P). H.B. acknowledge with thanks a MEC-FPI grant.

Materials

2,15-Dimethylhexahelicene N/A N/A Prepared according to reference 5b,c in the main text.
Corannulene N/A N/A Prepared according to reference 5a in the main text.
N-Bromosuccinimide (NBS) Sigma Aldrich B8.125-5 ReagentPlus®, 99%. Recrystallized from hot water.
Benzoyl peroxide (BPO) Sigma Aldrich B-2030 ~70% (titration). 30% water as stabilizer.
Sodium azide Sigma Aldrich S2002 ReagentPlus®, ≥99.5%.
Gold (III) chloride Hydrate Sigma Aldrich 50778 puriss. p.a., ACS reagent, ≥49% Au basis.
Ethynyltrimethylsilane Sigma Aldrich 218170 98%.
[PdCl2(dppf)] N/A N/A Prepared according to reference 6 in the main text.
CuI N/A N/A Prepared according to reference 7 in the main text.
KF Sigma Aldrich 307599 99%, spray-dried.
(+)-Sodium L-ascorbate Fluka 11140 BioXtra, ≥99.0% (NT).
Copper(II) Sulphate 5-hydrate Panreac 131270 for analysis.
Carbon tetrachloride (CCl4) Fluka 87030 for IR spectroscopy, ≥99.9%.
Dichloromethane (DCM) Fisher Scientific D/1852/25 Analytical reagent grade. Distilled prior to use.
Hexane Fisher Scientific H/0355/25 Analytical reagent grade. Distilled prior to use.
Ethyl acetate Scharlau AC0145025S Reagent grade. Distilled prior to use.
Tetrahydrofuran (THF) Fisher Scientific T/0701/25 Analytical reagent grade. Distilled prior to use.
1,2-Dichloroethane (DCE) Sigma Aldrich D6,156-3 ReagentPlus®, 99%.
Methanol (MeOH) VWR 20847.36 AnalaR NORMAPUR.
Triethyl amine (NEt3) Sigma Aldrich T0886 ≥99%.
Silica gel Acros 360050010 Particle size 40-60mm.
Sand – low iron Fisher Scientific S/0360/63 General purpose grade.
TLC Silica gel 60 F254 Merck 1.05554.0001
Monowave 300 (Microwave reactor) Anton Para
Sonicator Grupo Selecta 3000513 6 Litres.

References

  1. Scott, L. T., Hashemi, M. M., Bratcher, M. S. Corannulene bowl-to-bowl inversion is rapid at room temperature. J. Am. Chem. Soc. 114 (5), 1920-1921 (1992).
  2. Sygula, A., et al. Bowl stacking in curved polynuclear aromatic hydrocarbons: crystal and molecular structure of cyclopentacorannulene. J. Chem. Soc., Chem. Commun. (22), 2571-2572 (1994).
  3. Nuckolls, C., et al. Circular Dichroism and UV−Visible Absorption Spectra of the Langmuir−Blodgett Films of an Aggregating Helicene. J. Am. Chem. Soc. 120 (34), 8656-8660 (1998).
  4. Beljonne, D., et al. Electro-optic response of chiral helicenes in isotropic media. J. Chem. Phys. 108 (4), 1301-1304 (1998).
  5. Treboux, G., Lapstun, P., Wu, Z., Silverbrook, K. Electronic conductance of helicenes. Chem. Phys. Lett. 301 (5-6), 493-497 (1999).
  6. Katz, T. J. Syntheses of Functionalized and Aggregating Helical Conjugated Molecules. Angew. Chem., Int. Ed. 39 (11), 1921-1923 (2000).
  7. Furche, F., et al. Circular Dichroism of Helicenes Investigated by Time-Dependent Density Functional Theory. J. Am. Chem. Soc. 122 (8), 1717-1724 (2000).
  8. Urbano, A. Recent Developments in the Synthesis of Helicene-Like Molecules. Angew. Chem., Int. Ed. 42 (34), 3986-3989 (2003).
  9. Botek, E., Champane, B., Turki, M., André, J. M. Theoretical study of the second-order nonlinear optical properties of [N]helicenes and [N]phenylenes. J. Chem. Phys. 120 (4), 2042-2048 (2004).
  10. Lovas, F. J., et al. Interstellar Chemistry: A Strategy for Detecting Polycyclic Aromatic Hydrocarbons in Space. J. Am. Chem. Soc. 127 (12), 4345-4349 (2005).
  11. Wigglesworth, T. J., Sud, D., Norsten, T. B., Lekhi, V. S., Branda, N. R. Chiral Discrimination in Photochromic Helicenes. J. Am. Chem. Soc. 127 (20), 7272-7273 (2005).
  12. Wu, Y. -. T., Siegel, J. S. Aromatic Molecular-Bowl Hydrocarbons: Synthetic Derivatives, Their Structures, and Physical Properties. Chem. Rev. 106 (12), 4843-4867 (2006).
  13. Tsefrikas, V. M., Scott, L. T. Geodesic Polyarenes by Flash Vacuum Pyrolysis. Chem. Rev. 106 (12), 4868-4884 (2006).
  14. Wu, Y. -. T., Hayama, T., Baldrige, K. K., Linden, A., Siegel, J. S. Synthesis of Fluoranthenes and Indenocorannulenes: Elucidation of Chiral Stereoisomers on the Basis of Static Molecular Bowls. J. Am. Chem. Soc. 128 (21), 6870-6884 (2006).
  15. Wu, Y. -. T., Siegel, J. S. Synthesis, structures, and physical properties of aromatic molecular-bowl hydrocarbons. Top. Curr. Chem. 349, 63-120 (2014).
  16. Pérez, E. M., Martìn, N. Curves ahead: molecular receptors for fullerenes based on concave-convex complementarity. Chem. Soc. Rev. 37 (8), 1512-1519 (2008).
  17. Tashiro, K., Aida, T. Metalloporphyrin hosts for supramolecular chemistry of fullerenes. Chem. Soc. Rev. 36 (2), 189-197 (2007).
  18. Kawase, T. Ball- Bowl- and Belt-Shaped Conjugated Systems and Their Complexing Abilities: Exploration of the Concave−Convex π−π Interaction. Chem. Rev. 106 (12), 5250-5273 (2006).
  19. Martin, N., Pérez, E. M. Molecular tweezers for fullerenes. Pure Appl. Chem. 82 (3), 523-533 (2010).
  20. Hoppe, H., Sariciftci, N. S. Morphology of polymer/fullerene bulk heterojunction solar cells. J. Mater. Chem. 16 (1), 45-61 (2006).
  21. Kim, S. N., Rusling, J. F., Papadimitrakopoulos, F. Carbon Nanotubes for Electronic and Electrochemical Detection of Biomolecules. Adv. Mater. 19 (20), 3214-3228 (2007).
  22. Dennler, G., Scharber, M. C., Brabec, C. J. Polymer-Fullerene Bulk-Heterojunction Solar Cells. Adv. Mater. 21 (13), 1323-1338 (2009).
  23. Helgesen, M., Søndergaard, R., Krebs, F. C. Advanced materials and processes for polymer solar cell devices. J. Mater. Chem. 20 (1), 36-60 (2010).
  24. Brabec, C. J., et al. Polymer-Fullerene Bulk-Heterojunction Solar Cells. Adv. Mater. 22 (34), 3839-3856 (2010).
  25. Delgado, J. L., Bouit, P. -. A., Filippone, S., Herranz, M. A., Martìn, N. Organic photovoltaics: a chemical approach. Chem. Commun. 46 (27), 4853-4865 (2010).
  26. Schnorr, J. M., Swager, T. M. Emerging Applications of Carbon Nanotubes. Chem. Mater. 23 (3), 646-657 (2011).
  27. Wang, C., Takei, K., Takahashi, T., Javey, A. Carbon nanotube electronics – moving forward. Chem. Soc. Rev. 42 (7), 2592-2609 (2013).
  28. Park, S., Vosguerichian, M., Bao, Z. A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale. 5, 1727-1752 (2013).
  29. Mizyed, S., et al. Embracing C60 with Multiarmed Geodesic Partners. J. Am. Chem. Soc. 123 (51), 12770-12774 (2001).
  30. Sygula, A., Sygula, R., Ellern, A., Rabideau, P. W. Novel Twin Corannulene: Synthesis and Crystal Structure Determination of a Dicorannulenobarrelene Dicarboxylate. Org. Lett. 5 (15), 2595-2597 (2003).
  31. Georghiou, P. E., Tran, A. H., Mizyed, S., Bancu, M., Scott, L. T. Concave Polyarenes with Sulfide-Linked Flaps and Tentacles: New Electron-Rich Hosts for Fullerenes. J. Org. Chem. 70 (16), 6158-6163 (2005).
  32. Sygula, A., Fronczek, F. R., Sygula, R., Rabideau, P. W., Olmstead, M. M. A Double Concave Hydrocarbon Buckycatcher. J. Am. Chem. Soc. 129 (13), 3842-3843 (2007).
  33. Yanney, M., Sygula, A. Tridental molecular clip with corannulene pincers: is three better than two?. Tetrahedron Lett. 54 (21), 2604-2607 (2013).
  34. Stuparu, M. C. Rationally Designed Polymer Hosts of Fullerene. Angew. Chem., Int. Ed. 52 (30), 7786-7790 (2013).
  35. Le, V. H., Yanney, M., McGuire, M., Sygula, A., Lewis, E. A. Thermodynamics of Host-Guest Interactions between Fullerenes and a Buckycatcher. J. Phys. Chem. B. 118 (41), 11956-11964 (2014).
  36. Álvarez, C. M. Enhanced association for C70 over C60 with a metal complex with corannulene derivate ligands. Dalton Trans. 43 (42), 15693-15696 (2014).
  37. Álvarez, C. M. Assembling Nonplanar Polyaromatic Units by Click Chemistry. Study of Multicorannulene Systems as Host for Fullerenes. Org. Lett. 17 (11), 2578-2581 (2015).
  38. Yanney, M., Fronczek, F. R., Sygula, A. A 2:1 Receptor/C60 Complex as a Nanosized Universal Joint. Angew. Chem. Int. Ed. 54 (38), 11153-11156 (2015).
  39. Kuragama, P. L. A., Fronczek, F. R., Sygula, A. Bis-corannulene Receptors for Fullerenes Based on Klärner’s Tethers: Reaching the Affinity Limits. Org. Lett. 17 (21), (2015).
  40. George, S. R. D., Frith, T. D. H., Thomas, D. S., Harper, J. B. Putting corannulene in its place. Reactivity studies comparing corannulene with other aromatic hydrocarbons. Org. Biomol. Chem. 13 (34), 9035-9041 (2015).
  41. Shen, Y., Chen, C. -. F. Helicenes: Synthesis and Applications. Chem. Rev. 112 (3), 1463-1535 (2012).
  42. Crassous, J., Saleh, N., Shen, C. Helicene-based transition metal complexes: synthesis, properties and applications. Chem. Sci. 5 (10), 3680-3694 (2014).
  43. Nakamura, K., Furumi, S., Takeuchi, M., Shibuya, T., Tanaka, K. Enantioselective Synthesis and Enhanced Circularly Polarized Luminescence of S-Shaped Double Azahelicenes. J. Am. Chem. Soc. 136 (15), 5555-5558 (2014).
  44. Schweinfurth, D., Zalibera, M., Kathan, M., Shen, C., Mazzolini, M., Trapp, N., Crassous, J., Gescheidt, G., Diederich, F. Helicene Quinones: Redox-Triggered Chiroptical Switching and Chiral Recognition of the Semiquinone Radical Anion Lithium Salt by Electron Nuclear Double Resonance Spectroscopy. J. Am. Chem. Soc. 136 (37), 13045-13052 (2014).
  45. Šámal, M., Chercheja, S., Rybáček, J., Vacek Chocholoušová, J., Vacek, J., Bednárová, L., Šaman, D., Stará, I. G., Starý, I. An Ultimate Stereocontrol in Asymmetric Synthesis of Optically Pure Fully Aromatic Helicenes. J. Am. Chem. Soc. 137 (26), 8469-8474 (2015).
  46. Siegel, J. S., Butterfield, A. M., Gilomen, B. Kilogram scale production of corannulene. Organic Process Research & Development. 16 (4), 664-676 (2012).
  47. Mallory, F. B., Mallory, C. W. Photocyclization of stilbenes and related molecules. Organic Reactions. , (1984).
  48. Sato, M., et al. Convenient synthesis and reduction properties of [7] circulene. J. Chem. Soc., Perkin Trans. 2. (9), 1909-1914 (1998).
  49. Anderson, G. K., Lin, M. Bis(Benzonitrile)dichloro complexes of palladium and platinum. Inorg Synth. 28, 60-63 (1990).
  50. Nataro, C., Fosbenner, S. M. Synthesis and Characterization of Transition-Metal Complexes Containing 1,1′-Bis(diphenylphosphino)ferrocene. J. Chem. Ed. 86 (12), 1412-1415 (2009).
  51. Kauffman, G. B., Pinnell, R. P. Copper (I) Iodide. Inorg. Synth. 6, 3-6 (1960).
  52. Sonogashira, K. J. Development of Pd-Cu catalyzed cross-coupling of terminal acetylenes with sp2-carbon halides. Organomet. Chem. 653 (1-2), 46-49 (2002).
  53. Chinchilla, R., Nájera, C. Recent advances in Sonogashira reactions. Chem. Soc. Rev. 40 (10), 5084-5121 (2011).
  54. Kolb, H. C., Finn, M. G., Sharpless, K. B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew. Chem. Int. Ed. 40 (11), 2004-2021 (2001).
  55. Spiteri, C., Moses, J. E. Copper-Catalyzed Azide-Alkyne Cycloaddition: Regioselective Synthesis of 1,4,5-Trisubstituted 1,2,3-Triazoles. Angew. Chem. Int. Ed. 49 (1), 31-33 (2010).
check_url/fr/53954?article_type=t

Play Video

Citer Cet Article
Álvarez, C. M., Barbero, H., Ferrero, S. Preparation of a Corannulene-functionalized Hexahelicene by Copper(I)-catalyzed Alkyne-azide Cycloaddition of Nonplanar Polyaromatic Units. J. Vis. Exp. (115), e53954, doi:10.3791/53954 (2016).

View Video