Summary

A Whole Mount<em> In Situ</em> Hybridisering Metode for Gastropod bløtdyr<em> stor damsnegl</em

Published: March 15, 2016
doi:

Summary

The goal of this protocol is to provide users with a set of methods for the high-throughput decapsulation of Lymnaea stagnalis embryos and larvae in preparation for whole mount in situ hybridization, and for subsequent pre- and post-hybridization treatments.

Abstract

Hele mount in situ hybridisering (WMISH) er en teknikk som gjør det mulig for den romlige oppløsningen på nukleinsyremolekyler (ofte mRNA) innenfor en hel mount 'vev forberedelse, eller utviklingsstadiet (slik som et embryo eller larve) av interesse. WMISH er ekstremt kraftig, fordi det kan bidra vesentlig til den funksjonelle karakterisering av komplekse metazo genomer, en utfordring som blir stadig mer av en flaskehals med oversvømmelse av neste generasjons sekvensdata. Til tross for den konseptuelle enkelheten av teknikken mye tid er ofte nødvendig for å optimalisere de ulike parameterne som ligger til WMISH eksperimenter for nye modellsystemer; små forskjeller i de cellulære og biokjemiske egenskaper mellom vevstyper og utviklingsstadier bety at en enkelt WMISH metoden ikke kan være hensiktsmessig for alle situasjoner. Vi har utviklet et sett av WMISH metoder for re-fremvoksende gastropod modell stor damsnegl som genererer konsekvent ogklare WMISH signaler for en rekke gener, og på tvers av alle utviklingsstadier. Disse metodene inkluderer tildeling av larver av ukjent kronologiske alder til en ontogenetisk vindu, effektiv fjerning av embryoer og larver fra sine egg kapsler, anvendelse av en passende proteinase-K behandling for hver ontogenetisk vinduet, og hybridisering, post-hybridisering og immundeteksjon trinn. Disse metodene gir et grunnlag for det resulterende signal for en gitt RNA-transkript kan være ytterligere raffinert med probe spesifikk justering (primært probe konsentrasjon og hybridisering temperatur).

Introduction

Bløtdyr er en gruppe dyr som holder interessen for et bredt mangfold av vitenskapelige disipliner. Til tross for deres morfologisk mangfold 1, artsrikdom (andre bare til Leddyr i form av arter nummer to) og relevans for et bredt spekter av kommersielle 3, medisinsk 4 og vitenskapelige spørsmål 5-8, er det relativt få bløtdyr arter som kan hevde å være både velutstyrte vitenskapelige modeller og lett å vedlikeholde i et laboratoriemiljø. En bløtdyr som er mye brukt av disipliner som nevrobiologi 9, økotoksikologi 10 og mer nylig evolusjonsbiologi 11,12, er stor damsnegl, først og fremst på grunn av sin omfattende distribusjon og ekstrem enkelt vedlikehold. Til tross for sin popularitet som en "modell" organisme og dens lange historie med bruk av utviklings biologer 13-19, omfanget og kraften av molekylære verktøy tilgjengelig for L. stagnAlis vitenskapelige samfunnet ligger langt bak at mer tradisjonelle dyremodeller (Drosophila, mus, kråkeboller, nematoder).

Vårt ønske om å utvikle Lymnaea som en molekylær modell stammer fra en interesse i de molekylære mekanismene som styrer skalldannelsen. Dette motiverte oss til å avgrense et sett av teknikker som ville tillate for effektiv, konsekvent og sensitiv visualisering av genuttrykk under Lymnaea utvikling. Hele mount in situ hybridisering (WMISH) er mye brukt for en rekke modellorganismer og har vært i bruk i mer enn 40 år 20. I sine forskjellige forkledninger, kan ISH brukes til romlig lokalisere bestemte loci på kromosomene, rRNA, mRNA og mikro-RNA.

En av utfordringene vi trengte å ta før raffinering en WMISH metode for L. stagn var spørsmålet om forsiktig og effektivt trekke ut embryoer og larver av varierende stadier fra than egg kapsler hvor de er avsatt. Denne ekstraksjon, eller 'decapsulation', som må oppnås effektivt for å samle tilstrekkelig materiale for en gitt in situ forsøk, mens det på samme tid opprettholde morfologiske og cellulær integritet. Mens andre modellorganismer også gjennomgå innkapslet utvikling i våre hender ingen av metodene som er rapportert for disse artene kan være vellykket ansatt i L. stagn.

De overordnede målene for denne metoden er derfor: å trekke L. stagn embryoer og larver fra sine kapsler i en high-throughput mote, for å bruke pre-hybridisering behandlinger som optimaliserer WMISH signal, for å forberede embryoer og larver med tilfredsstillende WMISHsignals for bildebehandling.

Protocol

MERK: Følgende fremgangsmåte beskriver vår metode for å gjennomføre en in situ forsøk på embryonale og larvestadier av L. stagn. Dersom et trinn innebærer bruk av farlige kjemikalier dette er angitt med ordet "FORSIKTIG" og alle nødvendige sikkerhetsprosedyrer bør vedtas. Lenker til representative MSDS ark for farlige kjemikalier er gitt i Tilleggs File 1. Oppskrifter for alle reagenser er gitt i tilleggs File to. 1. Monte…

Representative Results

De representative WMISH fargemønstre som er vist på figur 3 ble samlet ved hjelp av teknikken som er beskrevet ovenfor, og gjenspeiler en rekke romlig uttrykk mønstre for gener som er involvert i en rekke molekylære prosesser som strekker seg fra skalldannelse (Novel gen 1, 2, 3 og 4), til celle-celle signalisering (DPP) til transkripsjonsregulering (Brachyury) på tvers av en rekke utviklingsstadier. Selv om vi ikke har kvantifise…

Discussion

Fremgangsmåten som er beskrevet her gjør det mulig for effektiv visualisering av RNA-transkripter med antagelig varierende ekspresjonsnivåer i alle utviklingsstadier av stor damsnegl. For å fjerne embryoer og larver fra sine kapsler vi trialed en rekke kjemiske, osmotisk sjokk og fysiske behandlinger er rapportert for andre encapsulated- utvikle modellorganismer. Men i våre hender metoden vi beskriver her er det bare høy gjennomstrømming teknikk som fjerner den tøffe kapsel membranen uten å skade befru…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Dette arbeidet ble støttet av midler til DJJ gjennom DFG prosjekt # JA2108 / 2-1.

Materials

Featherweight forceps Ehlert & Partner #4181119
Silicon tubing Glasgerätebau OCHS GmbH 760070
Glass capillaries Hilgenberg 1403547
12 well tissue culture dishes Carl Roth CE55.1
37% Formaldehyde Carl Roth P733.1 CAUTION – May cause cancer. Toxic by inhalation, in contact with skin and if swallowed. Toxic: danger of very serious irreversible effects through inhalation, in contact with skin and if swallowed.
Ethylenediamine tetraacetic acid Carl Roth CN06.3 CAUTION – CAUSES EYE IRRITATION. MAY CAUSE RESPIRATORY TRACT AND SKIN IRRITATION. Avoid breathing dust. Avoid contact with eyes, skin and clothing. Use only with adequate ventilation
Magnesium Chloride Carl Roth 2189.1
Tween-20 Carl Roth 9127.1 CAUTION – May be harmful if inhaled. May cause respiratory tract irritation. May be harmful if absorbed through skin. May cause skin irritation. May cause eye irritation. May be harmful if swallowed.
Sodium Chloride Carl Roth 3957.1
Ficoll type 400 Carl Roth CN90.1
polyvinylpyrrolidone K30 (MW 40) Carl Roth 4607.1 CAUTION – May be harmful if inhaled. May cause respiratory tract irritation. May be harmful if absorbed through skin. May cause skin irritation. May cause eye irritation. May be harmful if swallowed.
Nuclease freeBovine Serum Albumin Carl Roth 8895.1
Salmon sperm Carl Roth 5434.2
Heparin Carl Roth 7692.1 CAUTION – ADVERSE EFFECTS INCLUDE HEMORRHAGE, LOCAL IRRITATION. POSSIBLE ALLERGIC REACTION IF INHALED, INGESTED/CONTACTED. EYES/SKIN/RESPIRATORY TRACT IRRITANT. POSSIBLE HYPERSENSITIZATION. DURING PREGNANCY HAS BEEN REPORTED TO INCREASE RISK OF STILLBIRTH
Proteinase-K Carl Roth 7528.1
Glycine Carl Roth 3790.2
Deionised formamide Carl Roth P040.1 CAUTION – Irritating to eyes and skin. May be harmful by inhalation, in contact with skin and if swallowed. May cause harm to the unborn child. Hygroscopic.
Standard formamide Carl Roth 6749.3 CAUTION – Irritating to eyes and skin. May be harmful by inhalation, in contact with skin and if swallowed. May cause harm to the unborn child. Hygroscopic.
Triethanolamine Carl Roth 6300.1 CAUTION – Avoid breathing vapor or mist. Avoid contact with eyes. Avoid prolonged or repeated contact with skin. Wash thoroughly after handling.
Acetic anhydride Carl Roth 4483.1 CAUTION – CAUSES SEVERE SKIN AND EYE BURNS. REACTS VIOLENTLY WITH WATER. HARMFUL IF SWALLOWED. VAPOR IRRITATING TO THE EYES AND RESPIRATORY TRACT
Maleic acid Carl Roth K304.2 CAUTION – Very hazardous in case of eye contact (irritant), of ingestion, . Hazardous in case of skin contact (irritant), of inhalation (lung irritant). Slightly hazardous in case of skin contact (permeator). Corrosive to eyes and skin.
Benzyl benzoate Sigma B6630-250ML CAUTION – May be harmful if inhaled. May cause respiratory tract irritation. May be harmful if absorbed through skin. May cause skin irritation. May cause eye irritation. Harmful if swallowed.
Benzyl alcohol Sigma 10,800-6 CAUTION – Harmful if swallowed. Harmful if inhaled. Causes serious eye irritation.
Glycerol Carl Roth 3783.1
Blocking powder Roche 11096176001
Anti DIG Fab fragments AP conjugated Roche 11093274910
Tris-HCl Carl Roth 9090.3
4-Nitro blue tetrazolium chloride in dimethylformamide  Carl Roth 4421.3 CAUTION – May cause harm to the unborn child. Harmful by inhalation and in contact with skin. Irritating to eyes.
5-bromo-4-chloro-3-indolyl-phosphate Carl Roth A155.3 CAUTION – Potentially harmful if ingested. Do not get on skin, in eyes, or on clothing. Potential skin and eye irritant. 
N-acetyl cysteine Carl Roth 4126.1
Dithiothreitol Carl Roth 6908.1 CAUTION – May cause eye and skin irritation. May cause respiratory and digestive tract irritation. The toxicological properties of this material have not been fully investigated.
Tergitol Sigma NP40S CAUTION – May be harmful if inhaled. May cause respiratory tract irritation. May be harmful if absorbed through skin. May cause skin irritation. May cause eye irritation. May be harmful if swallowed.
Sodium dodecyl sulphate Carl Roth CN30.3 CAUTION – Harmful if swallowed. Toxic in contact with skin. Causes skin irritation. Causes serious eye damage. May cause respiratory irritation.
Potassium Chloride Carl Roth 6781.1
di-Sodium hydrogen phosphate dihydrate (Na2HPO4.2H2O) Carl Roth 4984.1
Potassium dihydrogen phosphate (KH2PO4) Carl Roth 3904.1
Tri sodium citrate dihydrate (C6H5Na3O7.2H2O) Carl Roth 3580.1 CAUTION – May cause eye, skin, and respiratory tract irritation. The toxicological properties of this material have not been fully investigated.
Mineral oil  Carl Roth HP50.2
InSituPro-Vsi  Intavis www.intavis.de/products/automated-ish-and-ihc

References

  1. Smith, S. A., Wilson, N. G., Goetz, F. E., Feehery, C., Andrade, S. C. S., et al. Resolving the evolutionary relationships of molluscs with phylogenomic tools. Nature. 480 (7377), 364-367 (2011).
  2. Brusca, R. C., Brusca, G. J. . Invertebrates. , (2002).
  3. World Health Organization. Schistosomiasis: number of people treated in 2011. Week. Epi. Rec. 88, 81-88 (2013).
  4. Henry, J. Q., Collin, R., Perry, K. J. The slipper snail, Crepidula.: an emerging lophotrochozoan model system. Biol. Bull. 218 (3), 211-229 (2010).
  5. Perry, K. J., Henry, J. Q. CRISPR/Cas9-mediated genome modification in the mollusc, Crepidula fornicata. Genesis. 53 (2), 237-244 (2015).
  6. Kandel, E. R. The molecular biology of memory storage: a dialog between genes and synapses. Bio. Rep. 24, 475-522 (2004).
  7. Jackson, D. J., Ellemor, N., Degnan, B. M. Correlating gene expression with larval competence, and the effect of age and parentage on metamorphosis in the tropical abalone Haliotis asinina. Mar. Biol. 147, 681-697 (2005).
  8. Carter, C. J., Farrar, N., Carlone, R. L., Spencer, G. E. Developmental expression of a molluscan RXR and evidence for its novel, nongenomic role in growth cone guidance. Dev. Biol. 343 (1-2), 124-137 (2010).
  9. Rittschof, D., McClellan-Green, P. Molluscs as multidisciplinary models in environment toxicology. Mar. Pollut. Bull. 50 (4), 369-373 (2005).
  10. Liu, M. M., Davey, J. W., Jackson, D. J., Blaxter, M. L., Davison, A. A conserved set of maternal genes? Insights from a molluscan transcriptome. Int. J. Dev. Biol. 58 (6-8), 501-511 (2014).
  11. Hohagen, J., Herlitze, I., Jackson, D. J. An optimised whole mount in situ. hybridisation protocol for the mollusc Lymnaea stagnalis. BMC Dev. Biol. 15 (1), 19 (2015).
  12. Raven, C. P. The development of the egg of Limnaea stagnalis. L. from oviposition till first cleavage. Arch. Neth. J. Zool. 1 (4), 91-121 (1946).
  13. Raven, C. P. The development of the egg of Limnaea Stagnalis. L. from the first cleavage till the troghophore stage, with special reference to its’ chemical embryology. Arch. Neth. J. Zool. 1 (4), 353-434 (1946).
  14. Raven, C. P. Morphogenesis in Limnaea stagnalis. and its disturbance by lithium. J. Exp. Zool. 121 (1), 1-77 (1952).
  15. Raven, C. P. The nature and origin of the cortical morphogenetic field in Limnaea. Dev. Biol. 7, 130-143 (1963).
  16. Morrill, J. B., Blair, C. A., Larsen, W. J. Regulative development in the pulmonate gastropod, Lymnaea palustris., as determined by blastomere deletion experiments. J Exp Zool. 183 (1), (1973).
  17. Van Den Biggelaar, J. A. M. Timing of the phases of the cell cycle during the period of asynchronous division up to the 49-cell stage in Lymnaea. J. Emb. Exp. Morph. 26 (3), 367-391 (1971).
  18. Verdonk, N. H. Gene expression in early development of Lymnaea stagnalis. Dev. Biol. 35 (1), 29 (1973).
  19. Gall, J. G., Pardue, M. L. Formation and Detection of Rna-Dna Hybrid Molecules in Cytological Preparations. Proceedings Of The National Academy Of Sciences Of The United States Of America. 63 (2), 378-383 (1969).
  20. Iijima, M., Takeuchi, T., Sarashina, I., Endo, K. Expression patterns of engrailed and dpp in the gastropod Lymnaea stagnalis. Dev Genes Evol. 218 (5), 237-251 (2008).
  21. Shimizu, K., Sarashina, I., Kagi, H., Endo, K. Possible functions of Dpp in gastropod shell formation and shell coiling. Dev Genes Evol. 221 (2), 59-68 (2011).
  22. Koop, D., Richards, G. S., Wanninger, A., Gunter, H. M., Degnan, B. M. D. The role of MAPK signaling in patterning and establishing axial symmetry in the gastropod Haliotis asinina. Dev. Biol. 311 (1), 200-212 (2007).
  23. Lartillot, N., Lespinet, O., Vervoort, M., Adoutte, A. Expression pattern of Brachyury in the mollusc Patella vulgata suggests a conserved role in the establishment of the AP axis in Bilateria. Development. 129 (6), 1411-1421 (2002).
  24. Jackson, D. J., Wörheide, G., Degnan, B. M. Dynamic expression of ancient and novel molluscan shell genes during ecological transitions. BMC Evol. Biol. 7 (1), 160 (2007).
  25. Jackson, D. J., Meyer, N. P., Seaver, E., Pang, K., McDougall, C., et al. Developmental expression of COE. across the Metazoa supports a conserved role in neuronal cell-type specification and mesodermal development. Dev Genes Evol. 220, 221-234 (2010).
  26. Perry, K. J., Lyons, D. C., Truchado-Garcia, M., Fischer, A. H. L., Helfrich, L. W., et al. Deployment of regulatory genes during gastrulation and germ layer specification in a model spiralian mollusc. Dev. Dyn. , (2015).
  27. Iijima, M., Takeuchi, T., Sarashina, I., Endo, K. Expression patterns of engrailed and dpp in the gastropod Lymnaea stagnalis. Dev Genes Evol. 218 (5), 237-251 (2008).
  28. Shimizu, K., Iijima, M., Setiamarga, D. H. E., Sarashina, I., Kudoh, T., et al. Left-right asymmetric expression of dpp in the mantle of gastropods correlates with asymmetric shell coiling. EvoDevo. 4 (1), 15 (2013).
  29. Christodoulou, F., Raible, F., Tomer, R., Simakov, O., Trachana, K., et al. Ancient animal microRNAs and the evolution of tissue identity. Nature. 463, (2010).
  30. Koga, M., Kudoh, T., Hamada, Y., Watanabe, M., Kageura, H. A new triple staining method for double in situ hybridization in combination with cell lineage tracing in whole-mount Xenopus embryos. Dev Growth Differ. 49 (8), 635-645 (2007).
  31. Lauter, G., Söll, I., Hauptmann, G. Two-color fluorescent in situ hybridization in the embryonic zebrafish brain using differential detection systems. BMC Dev. Biol. 11 (1), 43 (2011).
  32. Davison, A., Frend, H. T., Moray, C., Wheatley, H., Searle, L. J., Eichhorn, M. P. Mating behaviour in Lymnaea stagnalis. pond snails is a maternally inherited, lateralized trait. Biol. Lett. 5 (1), 20-22 (2009).
  33. Kuroda, R., Endo, B., Abe, M., Shimizu, M. Chiral blastomere arrangement dictates zygotic left-right asymmetry pathway in snails. Nature. 462 (7274), 790-794 (2009).
  34. Shibazaki, Y., Shimizu, M., Kuroda, R. Body handedness is directed by genetically determined cytoskeletal dynamics in the early embryo. Curr. Biol. 14 (16), 1462-1467 (2004).
  35. Lu, T. Z., Feng, Z. P. A sodium leak current regulates pacemaker activity of adult central pattern generator neurons in Lymnaea stagnalis. PLoS One. 6 (4), e18745 (2011).
  36. Dawson, T. F., Boone, A. N., Senatore, A., Piticaru, J., Thiyagalingam, S., et al. Gene Splicing of an Invertebrate Beta Subunit (LCav-beta) in the N-Terminal and HOOK Domains and Its Regulation of LCav1 and LCav2 Calcium Channels. PLoS ONE. 9 (4), e92941 (2014).
  37. Smith, S. A., Wilson, N. G., Goetz, F. E., Feehery, C., Andrade, S. C. S., et al. Resolving the evolutionary relationships of molluscs with phylogenomic tools. Nature. 480 (7377), 364-367 (2011).
  38. Gregory, T. R., Nicol, J. A., Tamm, H., Kullman, B., Kullman, K., et al. Eukaryotic genome size databases. Nuc. Acids. Res. 35 (Database issue), D332-D338 (2007).
check_url/fr/53968?article_type=t

Play Video

Citer Cet Article
Jackson, D. J., Herlitze, I., Hohagen, J. A Whole Mount In Situ Hybridization Method for the Gastropod Mollusc Lymnaea stagnalis. J. Vis. Exp. (109), e53968, doi:10.3791/53968 (2016).

View Video