Summary

Обызвествление сосудистых гладких мышечных клеток и визуализации аортальной кальцификации и Воспаление

Published: May 31, 2016
doi:

Summary

Vascular calcification is an important predictor of and contributor to human cardiovascular disease. This protocol describes methods for inducing calcification of cultured primary vascular smooth muscle cells and for quantifying calcification and macrophage burden in animal aortas using near-infrared fluorescence imaging.

Abstract

Cardiovascular disease is the leading cause of morbidity and mortality in the world. Atherosclerotic plaques, consisting of lipid-laden macrophages and calcification, develop in the coronary arteries, aortic valve, aorta, and peripheral conduit arteries and are the hallmark of cardiovascular disease. In humans, imaging with computed tomography allows for the quantification of vascular calcification; the presence of vascular calcification is a strong predictor of future cardiovascular events. Development of novel therapies in cardiovascular disease relies critically on improving our understanding of the underlying molecular mechanisms of atherosclerosis. Advancing our knowledge of atherosclerotic mechanisms relies on murine and cell-based models. Here, a method for imaging aortic calcification and macrophage infiltration using two spectrally distinct near-infrared fluorescent imaging probes is detailed. Near-infrared fluorescent imaging allows for the ex vivo quantification of calcification and macrophage accumulation in the entire aorta and can be used to further our understanding of the mechanistic relationship between inflammation and calcification in atherosclerosis. Additionally, a method for isolating and culturing animal aortic vascular smooth muscle cells and a protocol for inducing calcification in cultured smooth muscle cells from either murine aortas or from human coronary arteries is described. This in vitro method of modeling vascular calcification can be used to identify and characterize the signaling pathways likely important for the development of vascular disease, in the hopes of discovering novel targets for therapy.

Introduction

Сердечно – сосудистые заболевания являются ведущей причиной заболеваемости и смертности в мире, в том числе в Соединенных Штатах , где на его долю приходится более 780000 смертей ежегодно. 1 коронарного кальциноза артерии и кальцификации аорты являются отличительными чертами атеросклеротической болезни и служат сильные предикторы сердечно – сосудистых событий. 2- 4 Два основных типа сосудистой кальцификации было зарегистрировано у взрослых: интимы кальцификации, связанный с атеросклерозом, и медиальную (также известный как Монкеберг) кальцификации, связанной с хроническим заболеванием почек и диабетом 5 интимы кальцификации происходит в условиях накопления липидов и макрофагов. инфильтрация в стенку сосуда. 5,6 медиальной стенки кальцификации происходит независимо от интимы кальцификации, локализуется эластических волокон или гладких мышечных клеток, и не связано с отложением липидов или макрофагальной инфильтрации. 5,7,8 Исследования по выяснению молекулярных механизмовсосудистой кальцификации полагались на модельных системах на основе клеток и животных. Грызун модели для atherocalcific заболевания включают мышей с дефицитом в любом аполипопротеина Е (ApoE) 9,10 или липопротеинов низкой плотности рецептора (LDLR) 11 кормили высоким содержанием жиров, в то время как модели для медиальной кальцификации включают мышей с матрицы Gla белка (MGP) дефицит 12 или крыс , которые развиваются уремии либо почти полной нефрэктомии (нефрэктомии модель 5/6 – е) или под воздействием высокой аденин диеты. 13

Здесь, модель медиальной сосудистой кальцификации, связанной с дефицитом MGP сосредоточен на. MGP является внеклеточным белком , который ингибирует артериальной кальцификации. 12 Мутации в гене MGP были идентифицированы при синдроме Keutel, редким заболеванием человека характерны диффузные хрящевой кальцификации в дополнение к brachytelephalangy, потеря слуха, а также периферийное стеноза легочного. 14-18 Хотя не часто наблюдается, 19концентрические кальцификации нескольких артерий было описано при синдроме Keutel. 20 Общие полиморфизм в гене MGP человека связаны с повышенным риском развития кальцификации коронарных артерий, 21-23 , а более высокие уровни циркулирующих uncarboxylated, биологически неактивного MGP предсказывают сердечно – сосудистой смертности. 24 В отличие от людей с синдромом Keutel, MGP-дефицитных мышей разработать сильную сосудистую фенотип , состоящий из спонтанного широко распространенного артериальной кальцификации , начиная с двухнедельного возраста и умирают через 6-8 недель после родов из – за разрыва аорты. 12

В отличие от АроЕ – / – и LDLR – / – мышей кормили высоким содержанием жиров, которые развиваются интимы сосудистой кальцификации с ассоциированной макрофаг-индуцированной воспалением, MGP – / -. Мыши развивают медиальной сосудистой кальцификации при отсутствии инфильтрации макрофагами 11,25 Хотя эти данные свидетельствуют различные базовые стимулы для интимомаль и медиальная кальцификация, существует перекрытие в сигнальных механизмов , которые обеспечивают обе формы кальцификации. 26 Несколько сигнальных путей были идентифицированы , которые способствуют сосудистой кальцификации в том числе воспалительных медиаторов , таких как фактор некроза опухоли-альфа и IL-1 и про-остеогенных факторов такие как Notch, Wnt и костного морфогенетического белка (BMP) сигналов. 27,28 Эти сигнальные пути увеличивают экспрессию факторов транскрипции Рунт связанных фактора транскрипции 2 (RUNX2) и Osterix, что , в свою очередь , увеличивают экспрессию белков костной ткани ( . например, остеокальцина, sclerostin и щелочной фосфатазы) в сосудистую сеть , переносчики кальцификации 28-30 Мы и другие показали , что сосудистая кальцификация наблюдается в АроЕ – / – и LDLR – / – мышей кормили высоким содержанием жиров и спонтанная сосудистой кальцификации наблюдается у MGP – / – мышей все зависит от костного морфогенетического белка (BMP) SIgnaling, и именно этот путь , который ориентирован на здесь. 11,25,31 ВМР являются мощными остеогенных факторов , необходимых для формирования костной ткани и , как известно, проявляют повышенную экспрессию в человеческом атеросклерозе. 32-34 В пробирке исследования указывают на передачу сигналов BMP в регулировании выражение остеогенных факторов , таких как Runx2. 35-37 Избыточная экспрессия лиганда BMP, BMP-2, ускоряет развитие кальциноза сосудов в АпоЕ-дефицитных мышей , которых кормили диеты с высоким содержанием жира. 38 Кроме того, использование специфического BMP ингибиторы , такие сигнализации в качестве LDN-193189 (LDN) 39,40 и / или алк3-Fc предотвращает развитие сосудистой кальцификации в обоих LDLR – / – мышей кормили высоким содержанием жиров и MGP-дефицитных мышей 11,25.

Сосудистые клетки гладких мышц (VSMCs) играют важную роль в развитии сосудистой кальцификации. 30,41,42 медиальной кальцификации сосудов , которая развивается в MGP-дефицитных мышей является характеритеризуется трансдифференцировкой VSMCs к остеогенной фенотипа. Потеря результатов MGP к снижению экспрессии маркеров VSMC включая myocardin и альфа-актин гладких мышц, с одновременным повышением остеогенных маркеров, таких как Runx2 и остеопонтина. Эти изменения совпадают с развитием сосудистой кальцификации. 25,43,44

Аортальный кальциноз и воспаление у мышей , как правило , оцениваются с использованием гистохимических методов , таких как активность щелочной фосфатазы для ранней кальцификации и остеогенной активности, фон Косса и ализарин красный окрашивание на конце кальцификации и иммуногистохимических протоколов , которые нацелены на макрофаги белковые маркеры (например., CD68, F4 / 80, Mac-1, Mac-2, Mac-3). 9,45 Тем не менее, эти стандартные методы визуализации требуют обработки аортального тканей в поперечных сечений, который отнимает много времени и несовершенным из – за смещения выборки, и ограничены в своих возможность количественной оценки воспаления и calcificatиона в целом аорте. Этот протокол описывает способ визуализировать и количественно весь аортальный и среднего артериального кальцификации и макрофагами накопление с использованием ближней инфракрасной флуоресцентные (NIR) молекулярной визуализации ех естественных условиях. Также предложен способ сбора и культивирования первичных аортальных VSMCs от мышей и индуцируя кальциноз мышиных и человеческих VSMCs в пробирке для того , чтобы определить молекулярные механизмы , лежащие в основе сосудистой кальцификации. Эти методы обеспечивают исследователю как в естественных условиях и в пробирке методов изучения atherocalcific заболевания.

Protocol

Все исследования на мышах были проведены в строгом соответствии с рекомендациями, приведенными в Руководстве по уходу и использованию лабораторных животных Национальных институтов здравоохранения. Корпус и все процедуры, связанные с мышей, описанных в данном исследовании были одобр…

Representative Results

Аортальный кальциноз в MGP – / – и дикого типа мышей измеряли с помощью визуализации NIR кальция флуоресценции. Нет сигнала БИК кальция не был обнаружен в аорте мышей дикого типа, что указывает на отсутствие кальцификации (рисунок 2). Сильный сигнал БИК кальц?…

Discussion

Артериальное кальцификации является важным фактором риска развития сердечно – сосудистых заболеваний у людей и может внести свой ​​вклад непосредственно в патогенезе сердечно – сосудистых событий. 1,5,52 интимы отложение кальция в тонких волокнистых шапок атеросклерозом было пр…

Divulgations

The authors have nothing to disclose.

Acknowledgements

This work was supported by the Sarnoff Cardiovascular Research Foundation (MFB and TET), the Howard Hughes Medical Institute (TM), the Ladue Memorial Fellowship Award from Harvard Medical School (DKR), the START-Program of the Faculty of Medicine at RWTH Aachen (MD), the German Research Foundation (DE 1685/1-1, MD), the National Eye Institute (R01EY022746, ESB), the Leducq Foundation (Multidisciplinary Program to Elucidate the Role of Bone Morphogenetic Protein Signaling in the Pathogenesis of Pulmonary and Systemic Vascular Diseases, PBY, KDB, and DBB), the National Institute of Arthritis and Musculoskeletal and Skin Diseases (R01AR057374, PBY), the National Institute of Diabetes and Digestive and Kidney Diseases (R01DK082971, KDB and DBB), the American Heart Association Fellow-to-Faculty Award #11FTF7290032 (RM), and the National Heart, Lung, and Blood Institute (R01HL114805 and R01HL109506, EA; K08HL111210, RM).

Materials

15 ml conical tube Falcon 352096
30 G needle BD 305106
Alpha smooth muscle actin antibody Sigma SAB2500963
Chamber slide Nunc Lab-Tek 154461
Collagenase, Type 2  Worthington LS004176
Dexamethasone Sigma D4902
Dulbecco's Modified Eagle Medium Life Technologies 11965-084
Dulbecco's Phosphate Buffered Saline, no calcium Gibco 14190-144
Elastase Sigma E1250
Fetal bovine serum Gibco 16000-044
Forceps, fine point Roboz RS-4972
Forceps, full curve serrated Roboz RS-5138
Formalin (10%) Electron Microscopy Sciences 15740
Hank's Balanced Salt Solution Gibco 14025-092
Human coronary artery smooth muscle cells PromoCell C-12511
Insulin syringe with needle Terumo SS30M2913
L-ascorbic acid Sigma A-7506
Micro-dissecting spring scissors (13mm) Roboz RS-5676
Micro-dissecting spring scissors (3mm) Roboz RS-5610
NIR, cathepsin (ProSense-750EX) Perkin Elmer NEV10001EX
NIR, osteogenic (OsteoSense-680EX) Perkin Elmer NEV10020EX
Normal Saline Hospira 0409-4888-10
Nuclear fast red Sigma-Aldrich N3020
Odyssey Imaging System Li-Cor Odyssey 3.0
Penicillin/Streptomycin Corning 30-001-CI
Silver nitrate (5%) Ricca Chemical Company 6828-16
Sodium phosphate dibasic heptahydrate Sigma-Aldrich S-9390
Sodium thiosulfate Sigma S-1648
ß-glycerophosphate disodium salt hydrate Sigma G9422
Tissue culture flask, 25 cm2 Falcon 353108
Tissue culture plate (35mm x 10mm) Falcon 353001
Tissue culture plate, six-well Falcon 353046
Trypsin Corning 25-053-CI
Tube rodent holder Kent Scientific RSTR551
Vacuum-driven filtration system Millipore SCGP00525

References

  1. Go, A. S., et al. Heart disease and stroke statistics–2014 update: a report from the American Heart Association. Circulation. 129 (3), e28-e292 (2014).
  2. Wilson, P. W., et al. Abdominal aortic calcific deposits are an important predictor of vascular morbidity and mortality. Circulation. 103 (11), 1529-1534 (2001).
  3. Budoff, M. J., et al. Assessment of coronary artery disease by cardiac computed tomography: a scientific statement from the American Heart Association on Committee on Cardiovascular Imaging and Intervention, Council on Cardiovascular Radiology and Intervention, and Committee on Cardiac Imaging, Council on Clinical Cardiology. Circulation. 114 (16), 1761-1791 (2006).
  4. Greenland, P., LaBree, L., Azen, S. P., Doherty, T. M., Detrano, R. C. Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals. Jama. 291 (2), 210-215 (2004).
  5. Otsuka, F., Sakakura, K., Yahagi, K., Joner, M., Virmani, R. Has our understanding of calcification in human coronary atherosclerosis progressed?. Arterioscler Thromb Vasc Biol. 34 (4), 724-736 (2014).
  6. Virmani, R., Burke, A. P., Farb, A., Kolodgie, F. D. Pathology of the vulnerable plaque. J Am Coll Cardiol. 47 (8 Suppl), C13-C18 (2006).
  7. Amann, K. Media calcification and intima calcification are distinct entities in chronic kidney disease. Clin J Am Soc Nephrol. 3 (6), 1599-1605 (2008).
  8. Aikawa, E., et al. Arterial and aortic valve calcification abolished by elastolytic cathepsin S deficiency in chronic renal disease. Circulation. 119 (13), 1785-1794 (2009).
  9. Aikawa, E., et al. Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo. Circulation. 116 (24), 2841-2850 (2007).
  10. Qiao, J. H., et al. Pathology of atheromatous lesions in inbred and genetically engineered mice. Genetic determination of arterial calcification. Arterioscler Thromb. 14 (9), 1480-1497 (1994).
  11. Derwall, M., et al. Inhibition of bone morphogenetic protein signaling reduces vascular calcification and atherosclerosis. Arterioscler Thromb Vasc Biol. 32 (3), 613-622 (2012).
  12. Luo, G., et al. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature. 386 (6620), 78-81 (1997).
  13. Shobeiri, N., Adams, M. A., Holden, R. M. Vascular calcification in animal models of CKD: A review. Am J Nephrol. 31 (6), 471-481 (2010).
  14. Keutel, J., Jorgensen, G., Gabriel, P. [A new autosomal-recessive hereditary syndrome. Multiple peripheral pulmonary stenosis, brachytelephalangia, inner-ear deafness, ossification or calcification of cartilages]. Dtsch Med Wochenschr. 96 (43), 1676-1681 (1971).
  15. Munroe, P. B., et al. Mutations in the gene encoding the human matrix Gla protein cause Keutel syndrome. Nat Genet. 21 (1), 142-144 (1999).
  16. Cormode, E. J., Dawson, M., Lowry, R. B. Keutel syndrome: clinical report and literature review. Am J Med Genet. 24 (2), 289-294 (1986).
  17. Fryns, J. P., van Fleteren, A., Mattelaer, P., van den Berghe, H. Calcification of cartilages, brachytelephalangy and peripheral pulmonary stenosis. Confirmation of the Keutel syndrome. Eur J Pediatr. 142 (3), 201-203 (1984).
  18. Ozdemir, N., et al. Tracheobronchial calcification associated with Keutel syndrome. Turk J Pediatr. 48 (4), 357-361 (2006).
  19. Cranenburg, E. C., et al. Circulating matrix gamma-carboxyglutamate protein (MGP) species are refractory to vitamin K treatment in a new case of Keutel syndrome. J Thromb Haemost. 9 (6), 1225-1235 (2011).
  20. Meier, M., Weng, L. P., Alexandrakis, E., Ruschoff, J., Goeckenjan, G. Tracheobronchial stenosis in Keutel syndrome. Eur Respir J. 17 (3), 566-569 (2001).
  21. Wang, Y., et al. Common genetic variants of MGP are associated with calcification on the arterial wall but not with calcification present in the atherosclerotic plaques. Circ Cardiovasc Genet. 6 (3), 271-278 (2013).
  22. Cassidy-Bushrow, A. E., et al. Matrix gla protein gene polymorphism is associated with increased coronary artery calcification progression. Arterioscler Thromb Vasc Biol. 33 (3), 645-651 (2013).
  23. Crosier, M. D., et al. Matrix Gla protein polymorphisms are associated with coronary artery calcification in men. J Nutr Sci Vitaminol (Tokyo). 55 (1), 59-65 (2009).
  24. Liu, Y. P., et al. Inactive matrix Gla protein is causally related to adverse health outcomes: a Mendelian randomization study in a Flemish population. Hypertension. 65 (2), 463-470 (2015).
  25. Malhotra, R., et al. Inhibition of bone morphogenetic protein signal transduction prevents the medial vascular calcification associated with matrix Gla protein deficiency. PLoS One. 10 (1), e0117098 (2015).
  26. Demer, L. L., Tintut, Y. Inflammatory, metabolic, and genetic mechanisms of vascular calcification. Arterioscler Thromb Vasc Biol. 34 (4), 715-723 (2014).
  27. Rusanescu, G., Weissleder, R., Aikawa, E. Notch signaling in cardiovascular disease and calcification. Curr Cardiol Rev. 4 (3), 148-156 (2008).
  28. Leopold, J. A. Vascular calcification: Mechanisms of vascular smooth muscle cell calcification. Trends Cardiovasc Med. 25 (4), 267-274 (2015).
  29. Bostrom, K. I., Rajamannan, N. M., Towler, D. A. The regulation of valvular and vascular sclerosis by osteogenic morphogens. Circ Res. 109 (5), 564-577 (2011).
  30. Hruska, K. A., Mathew, S., Saab, G. Bone morphogenetic proteins in vascular calcification. Circ Res. 97 (2), 105-114 (2005).
  31. Yao, Y., et al. Inhibition of bone morphogenetic proteins protects against atherosclerosis and vascular calcification. Circ Res. 107 (4), 485-494 (2010).
  32. Bostrom, K., et al. Bone morphogenetic protein expression in human atherosclerotic lesions. J Clin Invest. 91 (4), 1800-1809 (1993).
  33. Bragdon, B., et al. Bone morphogenetic proteins: a critical review. Cell Signal. 23 (4), 609-620 (2011).
  34. Cai, J., Pardali, E., Sanchez-Duffhues, G., ten Dijke, P. BMP signaling in vascular diseases. FEBS Lett. 586 (14), 1993-2002 (2012).
  35. Lee, K. S., et al. Runx2 is a common target of transforming growth factor beta1 and bone morphogenetic protein 2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Mol Cell Biol. 20 (23), 8783-8792 (2000).
  36. Matsubara, T., et al. BMP2 regulates Osterix through Msx2 and Runx2 during osteoblast differentiation. J Biol Chem. 283 (43), 29119-29125 (2008).
  37. Li, X., Yang, H. Y., Giachelli, C. M. BMP-2 promotes phosphate uptake, phenotypic modulation, and calcification of human vascular smooth muscle cells. Atherosclerosis. 199 (2), 271-277 (2008).
  38. Nakagawa, Y., et al. Paracrine osteogenic signals via bone morphogenetic protein-2 accelerate the atherosclerotic intimal calcification in vivo. Arterioscler. Thromb. Vasc. Biol. 30 (10), 1908-1915 (2010).
  39. Cuny, G. D., et al. Structure-activity relationship study of bone morphogenetic protein (BMP) signaling inhibitors. Bioorg Med Chem Lett. 18 (15), 4388-4392 (2008).
  40. Yu, P. B., et al. BMP type I receptor inhibition reduces heterotopic ossification. Nat Med. 14 (12), 1363-1369 (2008).
  41. Schurgers, L. J., Uitto, J., Reutelingsperger, C. P. Vitamin K-dependent carboxylation of matrix Gla-protein: a crucial switch to control ectopic mineralization. Trends Mol Med. 19 (4), 217-226 (2013).
  42. Speer, M. Y., et al. Smooth muscle cells give rise to osteochondrogenic precursors and chondrocytes in calcifying arteries. Circ Res. 104 (6), 733-741 (2009).
  43. Speer, M. Y., Li, X., Hiremath, P. G., Giachelli, C. M. Runx2/Cbfa1 but not loss of myocardin, is required for smooth muscle cell lineage reprogramming toward osteochondrogenesis. J Cell Biochem. 110 (4), 935-947 (2010).
  44. Steitz, S. A., et al. Smooth muscle cell phenotypic transition associated with calcification: upregulation of Cbfa1 and downregulation of smooth muscle lineage markers. Circ Res. 89 (12), 1147-1154 (2001).
  45. Inoue, T., Plieth, D., Venkov, C. D., Xu, C., Neilson, E. G. Antibodies against macrophages that overlap in specificity with fibroblasts. Kidney Int. 67 (6), 2488-2493 (2005).
  46. Zaheer, A., et al. In vivo near-infrared fluorescence imaging of osteoblastic activity. Nat Biotechnol. 19 (12), 1148-1154 (2001).
  47. Aikawa, E., et al. Multimodality molecular imaging identifies proteolytic and osteogenic activities in early aortic valve disease. Circulation. 115 (3), 377-386 (2007).
  48. Lee, K. J., Czech, L., Waypa, G. B., Farrow, K. N. Isolation of pulmonary artery smooth muscle cells from neonatal mice. J Vis Exp. (80), e50889 (2013).
  49. Tang, Y., Herr, G., Johnson, W., Resnik, E., Aho, J. Induction and analysis of epithelial to mesenchymal transition. J Vis Exp. (78), (2013).
  50. Puchtler, H., Meloan, S. N. Demonstration of phosphates in calcium deposits: a modification of von Kossa’s reaction. Histochemistry. 56 (3-4), 177-185 (1978).
  51. Krahn, K. N., Bouten, C. V., van Tuijl, S., van Zandvoort, M. A., Merkx, M. Fluorescently labeled collagen binding proteins allow specific visualization of collagen in tissues and live cell culture. Anal Biochem. 350 (2), 177-185 (2006).
  52. Johnson, R. C., Leopold, J. A., Loscalzo, J. Vascular calcification: pathobiological mechanisms and clinical implications. Circ Res. 99 (10), 1044-1059 (2006).
  53. Vengrenyuk, Y., et al. A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc Natl Acad Sci U S A. 103 (40), 14678-14683 (2006).
  54. Maldonado, N., et al. A mechanistic analysis of the role of microcalcifications in atherosclerotic plaque stability: potential implications for plaque rupture. Am J Physiol Heart Circ Physiol. 303 (5), H619-H628 (2012).
  55. Toussaint, N. D., Kerr, P. G. Vascular calcification and arterial stiffness in chronic kidney disease: implications and management. Nephrology (Carlton). 12 (5), 500-509 (2007).
  56. Vines, D. C., Green, D. E., Kudo, G., Keller, H. Evaluation of mouse tail-vein injections both qualitatively and quantitatively on small-animal PET tail scans. J Nucl Med Technol. 39 (4), 264-270 (2011).
  57. Smith, J. G., et al. Association of low-density lipoprotein cholesterol-related genetic variants with aortic valve calcium and incident aortic stenosis. Jama. 312 (17), 1764-1771 (2014).
  58. Thanassoulis, G., et al. Genetic associations with valvular calcification and aortic stenosis. N Engl J Med. 368 (6), 503-512 (2013).
  59. Otto, C. M., Kuusisto, J., Reichenbach, D. D., Gown, A. M., O’Brien, K. D. Characterization of the early lesion of ‘degenerative’ valvular aortic stenosis. Histological and immunohistochemical studies. Circulation. 90 (2), 844-853 (1994).
  60. New, S. E., Aikawa, E. Molecular imaging insights into early inflammatory stages of arterial and aortic valve calcification. Circ Res. 108 (11), 1381-1391 (2011).
  61. Jaffer, F. A., Libby, P., Weissleder, R. Optical and multimodality molecular imaging: insights into atherosclerosis. Arterioscler Thromb Vasc Biol. 29 (7), 1017-1024 (2009).
  62. Stern, P. H. Antiresorptive agents and osteoclast apoptosis. J Cell Biochem. 101 (5), 1087-1096 (2007).
  63. Ray, J. L., Leach, R., Herbert, J. M., Benson, M. Isolation of vascular smooth muscle cells from a single murine aorta. Methods Cell Sci. 23 (4), 185-188 (2001).
  64. Chamley-Campbell, J., Campbell, G. R., Ross, R. The smooth muscle cell in culture. Physiol Rev. 59 (1), 1-61 (1979).
  65. Trion, A., Schutte-Bart, C., Bax, W. H., Jukema, J. W., van der Laarse, A. Modulation of calcification of vascular smooth muscle cells in culture by calcium antagonists, statins, and their combination. Mol Cell Biochem. 308 (1-2), 25-33 (2008).
  66. Mori, K., Shioi, A., Jono, S., Nishizawa, Y., Morii, H. Dexamethasone enhances In vitro vascular calcification by promoting osteoblastic differentiation of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 19 (9), 2112-2118 (1999).
  67. Thyberg, J. Differentiated properties and proliferation of arterial smooth muscle cells in culture. Int Rev Cytol. 169, 183-265 (1996).
  68. Dinardo, C. L., et al. Vascular smooth muscle cells exhibit a progressive loss of rigidity with serial culture passaging. Biorheology. 49 (5-6), 365-373 (2012).
  69. Metz, R. P., Patterson, J. L., Wilson, E. Vascular smooth muscle cells: isolation, culture, and characterization. Methods Mol Biol. 843, 169-176 (2012).
  70. Proudfoot, D., Shanahan, C. Human vascular smooth muscle cell culture. Methods Mol Biol. 806, 251-263 (2012).
  71. Hruska, K. A. Vascular smooth muscle cells in the pathogenesis of vascular calcification. Circ Res. 104 (6), 710-711 (2009).
check_url/fr/54017?article_type=t

Play Video

Citer Cet Article
O’Rourke, C., Shelton, G., Hutcheson, J. D., Burke, M. F., Martyn, T., Thayer, T. E., Shakartzi, H. R., Buswell, M. D., Tainsh, R. E., Yu, B., Bagchi, A., Rhee, D. K., Wu, C., Derwall, M., Buys, E. S., Yu, P. B., Bloch, K. D., Aikawa, E., Bloch, D. B., Malhotra, R. Calcification of Vascular Smooth Muscle Cells and Imaging of Aortic Calcification and Inflammation. J. Vis. Exp. (111), e54017, doi:10.3791/54017 (2016).

View Video