Summary

RNA纯化在细胞内生长<em>李斯特菌</em>巨噬细胞

Published: June 04, 2016
doi:

Summary

Here we describe a method for bacterial RNA isolation from Listeria monocytogenes bacteria growing inside murine macrophages. This technique can be used with other intracellular pathogens and mammalian host cells.

Abstract

Analysis of the transcriptome of bacterial pathogens during mammalian infection is a valuable tool for studying genes and factors that mediate infection. However, isolating bacterial RNA from infected cells or tissues is a challenging task, since mammalian RNA mostly dominates the lysates of infected cells. Here we describe an optimized method for RNA isolation of Listeria monocytogenes bacteria growing within bone marrow derived macrophage cells. Upon infection, cells are mildly lysed and rapidly filtered to discard most of the host proteins and RNA, while retaining intact bacteria. Next, bacterial RNA is isolated using hot phenol-SDS extraction followed by DNase treatment. The extracted RNA is suitable for gene transcription analysis by multiple techniques. This method is successfully employed in our studies of Listeria monocytogenes gene regulation during infection of macrophage cells 1-4. The protocol can be easily modified to study other bacterial pathogens and cell types.

Introduction

细胞内细菌病原体─引起传染病和能生长和再现人类宿主细胞内的细菌─是全世界主要的健康关注5。入侵和哺乳动物细胞内复制,细胞内病原体已取得成熟的致病机制和因素。虽然这些机制是引起疾病的能力根本,我们知之甚少的监管和动态。因为在液体培养基中生长的细菌的基因表达分布不反映宿主细胞内的实际的环境中,人们越来越需要转录在它们的细胞内的壁龛生长的细菌的分析。这种分析将使主机触发特异性细菌适应的解密,并将有助于确定治疗方案设计新的目标。细胞内生长的细菌的转录组分析是非常具有挑战性,因为哺乳动物RNA多于由细菌RNA至少十倍。在这个手稿中,我们描述的实验方法,从单核细胞增生李斯特菌小鼠巨噬细胞中分离出不断增长的细菌RNA。提取的RNA可用于研究细胞内的适应和致病菌转录分析的各种技术,如RT-PCR,RNA测序,微阵列和其它基于杂交的技术的毒力机制。

李斯特菌是李斯特菌在人体中的病原体,临床表现主要对象是免疫功能低下者,老人和孕妇6的疾病。它 是,侵入一个宽已在宿主-病原体的相互作用被使用了几十年作为模型研究7哺乳动物细胞的阵列的革兰氏阳性兼性细胞内病原体。在侵袭,它最初驻留在液泡或吞噬体(在吞噬细胞的情况下),从它必须转义入T他宿主细胞胞质溶胶中,以便进行复制。几个毒力因子已经显示介导的逃生过程中,主要是孔隙形成溶血素,李斯特O(LLO)和两个附加的磷脂8。在胞质溶胶中的细菌使用主机肌动蛋白聚合机械推动自己对小区内的肌动蛋白丝,并从细胞扩散到细胞( 图1)。 L.所有主要毒力因子参与入侵,细胞内生存和复制的单核细胞 ,都是由主控毒力调节转录激活,经皮射频消融8-10。

在过去十年中,许多研究由我们进行的和其他人已经成功地应用于宿主细胞2,11-15内部为胞内生长的细菌的转录组分析的方法。两种主要的方法用于细菌RNA从其基于主机的RNA分离:1)细菌RNA的选择性富集和2)RNA分离由迪菲rential细胞裂解。第一种方法依赖于(使用市售的试剂盒为例)的总RNA提取物消减杂交哺乳动物RNA分子或细菌转录序列(SCOTS)11选择性捕获。第二种方法依赖于细菌和宿主细胞中,其中在细菌细胞中保持完整的宿主细胞裂解的差分裂解。细菌细胞,然后从宿主细胞裂解物中分离,通常是通过离心,并且将RNA是使用标准技术提取。使用这种方法的主要问题是,连同完好无损的细菌,宿主细胞细胞核也分离,从而将RNA制剂仍含有哺乳动物RNA。克服这个问题的一种方式是完整的细菌使用差速离心的宿主细胞的细胞核中分离出来,虽然这过程通常需要时间提高在基因表达谱变化的提取过程中的关注。在本文中,我们提出了一个改进的和快速的巴cteria RNA提取协议,这是基于对细胞差动裂解的方法。首先,L.巨噬细胞感染单核细胞的细胞裂解用冷水。接着,巨噬细胞的核是由一个简短离心除去完整细菌迅速收集在过滤器上,从该RNA被使用的细菌核酸的热酚-SDS提取隔离。

Protocol

注意:在整个实验中,巨噬细胞,在5%CO 2的强制空气培养箱中在37℃下保温,并仅用于实验操作,其在II类生物安全柜进行取出的孵化。与L.工作菌等细菌是根据生物安全2级法规。 1.细胞的制备及细菌感染(1日和2) 1天种子2.0×10 7个骨髓衍生巨噬细胞(BMDM)上在30毫升BMDM +青霉素-链霉素介质( 表2)145毫米的菜。种子3板为每个细菌?…

Representative Results

该模型系统示于图1,并包括感染L.巨噬细胞菌等细菌,这在复制巨噬细胞胞浆图2表示实验方案。 图3表示WT L.期间的毒力基因等RT-qPCR的分析典型结果单核细胞巨噬细胞的增长相比,在丰富的实验室中BHI的增长。结果显示的L的两个主要毒力因子的转录水平单核细胞增生;溶血素编码LLO毒素和Acta…

Discussion

这里描述的协议代表了从细菌RNA分离的优化方法细菌单核细胞巨噬细胞在细胞内不断增长。这个协议是基于细胞差动裂解,并包括用于细菌RNA富集两个主要步骤:使用离心和过滤细菌的快速采集巨噬细胞的细胞核沉淀。这些步骤之后是一个标准的RNA提取步骤。虽然这个协议描述李斯特菌RNA的纯化,它可以很容易地修改为其它的细菌病原体。虽然方法主要针对RNA进行转录分析的纯化?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

The research in the Herskovits lab is supported by 335400 ERC and R01A/109048 NIH grants.

Materials

Listeria monocytogenes 10403S 20
Bone marrow derived macrophages prepared from C57B/6 female mice 21
H2O, RNAse free Thermo Scientific 10977-015 DEPC-treated water can be used
DMEM Gibco 41965039
Glutamine Gibco 25030081
Sodium pyruvate Gibco 11360-088
b-Mercaptoethanol   Gibco 31350010
Pen/Strep Gibco 15140-122
Gentamicin Sigma-Aldrich G1397
FBS Gibco 10270106
Dulbecco’s Phosphate Buffered Saline-PBS Sigma-Aldrich D8537
Brain heart infusion (BHI) Merckmillipore 1104930500
Phenol saturated pH 4.3 Fisher BP1751I-400
Chloroform Fisher BP1145-1
Iso-amyl alcohol Sigma-Aldrich W205702
Sodium acetate Sigma-Aldrich W302406
EDTA Sigma-Aldrich EDS
DNaseI Fermentas, EN0521
SDS 10% Sigma-Aldrich L4522
Ethanol absolute Merck Millipore 1070174000
37°C, 5% CO2 forced-air incubator Thermo Scientific Model 3111
Cell scrapers Nunc 179693
Kontes glass holder for 45 mm filters Fisher K953755-0045
MF-Millipore filters 45 mm, 0.45 µm Merck Millipore HAWP04700
SpeedVac system Thermo Scientific SPD131DDA
Vortex-Genie 2 Scientific Industries Model G560E
NanoDrop Thermo Scientific
145 mm cell culture dishes Greiner 639 160
1.7 ml tubes, RNase-free Axygen MCT-175-C
30°C incubator Thermo Scientific
65 °C heat block Thermo Scientific
4 °C table centrifuge Eppendorf 5417R
Sterile pipettes, 25 ml Greiner
Falcon tubes, 50 ml Greiner
Liquid nitrogen

References

  1. Lobel, L., et al. The metabolic regulator CodY links Listeria monocytogenes metabolism to virulence by directly activating the virulence regulatory gene prfA. Mol Microbiol. , (2014).
  2. Lobel, L., Sigal, N., Borovok, I., Ruppin, E., Herskovits, A. A. Integrative genomic analysis identifies isoleucine and CodY as regulators of Listeria monocytogenes virulence. PLoS Genet. 8 , e1002887 (2012).
  3. Kaplan Zeevi, M., et al. Listeria monocytogenes multidrug resistance transporters and cyclic di-AMP, which contribute to type I interferon induction, play a role in cell wall stress. J Bacteriol. 195, 5250-5261 (2013).
  4. Rabinovich, L., Sigal, N., Borovok, I., Nir-Paz, R., Herskovits, A. A. Prophage excision activates Listeria competence genes that promote phagosomal escape and virulence. Cell. 150, 792-802 (2012).
  5. Swaminathan, B., Gerner-Smidt, P. The epidemiology of human listeriosis. Microbes Infect. 9, 1236-1243 (2007).
  6. Hamon, M., Bierne, H., Cossart, P. Listeria monocytogenes: a multifaceted model. Nat Rev Microbiol. 4, 423-434 (2006).
  7. Dussurget, O., Pizarro-Cerda, J., Cossart, P. Molecular determinants of listeria monocytogenes virulence. Ann Rev Microbiol. 58, 587-610 (2004).
  8. Portnoy, D. A., Auerbuch, V., Glomski, I. J. The cell biology of Listeria monocytogenes infection: the intersection of bacterial pathogenesis and cell-mediated immunity. J Cell Biol. 158, 409-414 (2002).
  9. Freitag, N. E., Port, G. C., Miner, M. D. Listeria monocytogenes – from saprophyte to intracellular pathogen. Nat Rev Microbiol. 7, 623-628 (2009).
  10. Graham, J. E., Clark-Curtiss, J. E. Identification of Mycobacterium tuberculosis RNAs synthesized in response to phagocytosis by human macrophages by selective capture of transcribed sequences (SCOTS). Proc Natl Acad Sci U S A. 96, 11554-11559 (1999).
  11. Toledo-Arana, A., et al. The Listeria transcriptional landscape from saprophytism to virulence. Nature. 459, 950-956 (2009).
  12. Schnappinger, D., et al. Transcriptional Adaptation of Mycobacterium tuberculosis within Macrophages: Insights into the Phagosomal Environment. J Exp Med. 198, 693-704 (2003).
  13. Albrecht, M., Sharma, C. M., Reinhardt, R., Vogel, J., Rudel, T. Deep sequencing-based discovery of the Chlamydia trachomatis transcriptome. Nucleic Acids Res. 38, 868-877 (2010).
  14. La, M. V., Raoult, D., Renesto, P. Regulation of whole bacterial pathogen transcription within infected hosts. FEMS Microbiol Rev. 32, 440-460 (2008).
  15. Westermann, A. J., Gorski, S. A., Vogel, J. Dual RNA-seq of pathogen and host. Nat Rev Microbiol. 10, 618-630 (2012).
  16. Rienksma, R. A., et al. Comprehensive insights into transcriptional adaptation of intracellular mycobacteria by microbe-enriched dual RNA sequencing. BMC Genomics. 16, 34 (2015).
  17. Afonso-Grunz, F., et al. Dual 3’Seq using deepSuperSAGE uncovers transcriptomes of interacting Salmonella enterica Typhimurium and human host cells. BMC Genomics. 16, 323 (2015).
  18. Englen, M. D., Valdez, Y. E., Lehnert, N. M., Lehnert, B. E. Granulocyte/macrophage colony-stimulating factor is expressed and secreted in cultures of murine L929 cells. J Immunol Methods. 184, 281-283 (1995).
  19. Becavin, C., et al. Comparison of widely used Listeria monocytogenes strains EGD, 10403S, and EGD-e highlights genomic variations underlying differences in pathogenicity. MBio. 5, e00969-e900914 (2014).
  20. Celada, A., Gray, P. W., Rinderknecht, E., Schreiber, R. D. Evidence for a gamma-interferon receptor that regulates macrophage tumoricidal activity. J Exp Med. 160, 55-74 (1984).
check_url/fr/54044?article_type=t

Play Video

Citer Cet Article
Sigal, N., Pasechnek, A., Herskovits, A. A. RNA Purification from Intracellularly Grown Listeria monocytogenes in Macrophage Cells. J. Vis. Exp. (112), e54044, doi:10.3791/54044 (2016).

View Video