Summary

RNA 시퀀싱 분석은 유전자 발현 및 게놈 변경을 특성화를 대상으로

Published: August 04, 2016
doi:

Summary

We describe a targeted RNA sequencing-based method that includes preparation of indexed cDNA libraries, hybridization and capture with custom probes and data analysis to interrogate selected transcripts for gene expression, mutations, and gene fusions. Targeted RNAseq permits cost-effective, rapid evaluation of selected transcripts on a desktop sequencer.

Abstract

RNA 서열 (RNAseq)는 유전자 발현 돌연변이 유전자 융합체, 및 비 암호화 RNA를 검출하고 특성화하는 데에 이용 될 수있는 다목적 방법이다. 1 억 순서 읽고 등의 mRNA 및 비 암호화 RNA를 여러 RNA 제품을 포함 할 수있다 – 표준 RNAseq (30)가 필요합니다. 우리는 타겟 RNAseq (캡처) 바탕 화면 시퀀서를 사용하여 선택 RNA 제품에 초점을 맞춘 연구를 허용하는 방법을 보여줍니다. RNAseq 캡처 그렇지 않으면 기존의 RNAseq 방법을 사용하여 놓칠 수있다, 주석이 달려 있지 않은 저, 또는 일시적으로 표현 된 성적 증명서를 특성화 할 수 있습니다. 여기에서 우리는 세포 라인, 리보솜 RNA 고갈, cDNA 합성, 바코드 라이브러리, 바탕 화면 시퀀서에 하이브리드 및 목표 성적 증명서의 캡처 및 다중 서열의 준비에서 RNA의 추출을 설명합니다. 또한 품질 관리 평가, 정렬 검출 융합 유전자 발현의 정량화 및 단일 NUC의 식별을 포함하는 연산 파이프 라인을 분석, 개요leotide 변형. 이 분석은 유전자 발현, 유전자 융합, 돌연변이의 특성을 타겟팅 사체 서열을 허용한다.

Introduction

Whole transcriptome or RNA sequencing (RNAseq) is an unbiased sequencing method to assess all RNA products. The goal of targeted RNAseq (Capture) is a focused evaluation of selected transcripts with increased sensitivity, dynamic range, reduced cost or scale, and increased throughput compared to standard RNAseq. Similar to standard RNAseq, targeted enrichment approaches can be used to evaluate gene expression, multiple RNA species such as mRNA, microRNA (miRNA), lncRNA1, other noncoding RNAs2, gene fusions3, and mutations4-6.

Capture involves hybridization of complementary oligonucleotides to enrich cDNA libraries for sequencing. The rationale for RNAseq Capture is similar to microarray approaches where complementary oligonucleotides or probes are hybridized to samples and then measured for relative abundance. For microarray technologies, expression is based on relative signal measured for transcripts binding to these probes. Microarrays are thus limited by range, potential background noise from non-specific binding, and cross-hybridization of probes. Furthermore, arrays have limited dynamic range for low and highly expressed transcripts compared to RNAseq1. Microarrays are widely utilized due to their reduced cost and high throughput capacity compared to RNAseq.

Here, we demonstrate a method for RNAseq Capture that offers a middle ground between RNAseq and microarray approaches for evaluating the transcriptome. RNAseq Capture has intermediate throughput, greater dynamic range and sensitivity, and is scaled for fast turnaround on desktop sequencers. RNAseq Capture also requires reduced computational resources in terms of storage space and data processing.

Protocol

참고 :이 프로토콜은 동시 처리 및 4 개의 샘플의 분석을 설명합니다. 이 방법은 세포에서 분리 된 RNA, 냉동 조직과 포르말린 고정 파라핀 조직 (FFPE)와 호환됩니다. 각 샘플에 대해 RNA 입력을 시작하는 1000 NG (250 권장 NG) -이 프로토콜은 50로 시작합니다. 1. rRNA의 고갈 및 RNA 절차의 분열 rRNA의 고갈 실온에서 -20 ° C와 해동에서 용출, 프라임, 조각 믹?…

Representative Results

RNAseq 캡처 개략적 강조 주요 단계가도 1에 도시되어있다. 공지 된 돌연변이와 함께 4 개의 암 세포주는 RNAseq 캡처 기술의 유효성을 증명 하였다 (K562 ABL1 융합, RET 융합과 LC2와, EOL1 PDGFRalpha 융합 및 RT-으로 4 FGFR3 융합과). 네 개의 샘플을 함께 모으고 100 혈압 FASTQ 파일을 생성하는 데스크탑 시퀀서에 판독 2 배속으로 서열화 하였다. 인?…

Discussion

RNAseq 캡처 RNAseq 및 마이크로 어레이 사이의 중간 전략은 사체의 선택된 부분을 평가하기위한 접근이다. 캡처의 이점은 유전자 변형의 데스크탑 시퀀서, 높은 처리량, 및 검출에 선정 신속한 처리 시간 감소를 포함한다. 이 방법은, 비 코딩 RNA를 (23)의 특성을 단일 염기를 검출하도록 구성 될 수있는 RNA의 스 플라이 싱을 조사하고 유전자 융합체 또는 구조적 재 배열 (24)을 식별하기…

Divulgations

The authors have nothing to disclose.

Acknowledgements

We give special thanks to Ezra Lyon, Eliot Zhu, Michele Wing, Esko Kautto and Eric Samorodnitsky for technical support. We would also like to thank Jenny Badillo for her administrative support for our team. We acknowledge the Ohio Supercomputer Center (OSC) for providing disk space, processing capacity, and support to run our analyses. We thank the Comprehensive Cancer Center (CCC) at The Ohio State University Wexner Medical Center for their administrative support of this work. S.R. and Team are supported by the American Cancer Society (MRSG-12-194-01-TBG), a Prostate Cancer Foundation Young Investigator Award, NHGRI (UM1HG006508-01A1), Fore Cancer Research Foundation, American Lung Association, and Pelotonia.

Materials

Thermomixer R Eppendorf 21516-166
Centrifuge 5417R Eppendorf 5417R
miRNeasy Mini Kit Qiagen 217004
Molecular Biology Grade Ethanol Sigma Aldrich E7023-6X500ML
Thermoblock 24 X 1.5ml Eppendorf 21516-166
MiSeq Reagent Kit v2 (300-cycles) Illumina MS-102-2002
MiSeq Desktop Sequencer Illumina
PhiX Control v3 Illumina FC-110-3001
TruSeq Stranded Total RNA Kit with RiboZero Gold SetA Illumina RS-122-2301
25 rxn xGen® Universal Blocking Oligo – TS-p5 IDT 127040822
25 rxn xGen® Universal Blocking Oligo – TS-p7(6nt) IDT 127040823
25 rxn xGen® Universal Blocking Oligo – TS-p7(8nt) IDT 127040824
Agencourt® AMPure® XP – PCR Purification beads  Beckman-Coulter A63880
Dynabeads® M-270 Streptavidin Life Technologies 65305
COT Human DNA, Fluorometric Grade, 1mg Roche Applied Science 05480647001
Qubit® Assay Tubes  Life Technologies Q32856
Qubit® dsDNA HS Assay Kit Life Technologies Q32851
SeqCap® EZ Hybridization and Wash Kits  (24 or 96 reactions) Roche NimbleGen  05634261001 or 05634253001 
Qubit® 2.0 Fluorometer  Life Technologies Q32866
10 x 2 ml IDTE pH 8.0 (1X TE Solution) IDT
Tween20 BioXtra Sigma P7949-500ML
Nuclease Free Water Life Technologies AM9937
C1000 Touch™ Thermal Cycler with 96–Well Fast Rection Module Biorad 185-1196
SeqCap EZ Hybridization and Wash Kits Roche Applied Science 05634253001
SuperScript II Reverse Transcription 200U/ul Life Technologies 18064-014
D1000 ScreenTape Agilent Technol. Inc. 5067-5582
Agencourt RNAClean XP -40ml Beckman Coulter Inc A63987
RNA ScreenTape Agilent Technol. Inc. 5067-5576
RNA ScreenTape Ladder Agilent Technol. Inc. 5067-5578
RNA ScreenTape Sample Buffer Agilent Technol. Inc. 5067-5577
Sodium Hydroxide Sigma 72068-100ML
DynaBeads MyOne Streptavidin T1 Life Technologies 65602
DYNAMAG -96 SIDE EACH Life Technologies 12331D
Chloroform Sigma C2432-1L
KAPA HotStart ReadyMix KAPA Biosystems KK2602
NanoDrop 2000 Spectrophotometer Thermo Scientific
My Block Mini Dry Bath Benchmark BSH200
D1000 Reagents Agilent Technol. Inc. 5067- 5583
Vacufuge Plus Eppendorf 022829861 

References

  1. Wang, Z., Gerstein, M., Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 10, 57-63 (2009).
  2. Mercer, T. R., et al. Targeted sequencing for gene discovery and quantification using RNA CaptureSeq. Nat Protoc. 9, 989-1009 (2014).
  3. Maher, C. A., et al. Chimeric transcript discovery by paired-end transcriptome sequencing. Proc Natl Acad Sci U S A. 106, 12353-12358 (2009).
  4. Piskol, R., Ramaswami, G., Li, J. B. Reliable identification of genomic variants from RNA-seq data. Am J Hum Genet. 93, 641-651 (2013).
  5. Quinn, E. M., et al. Development of strategies for SNP detection in RNA-seq data: application to lymphoblastoid cell lines and evaluation using 1000 Genomes data. PLoS One. 8, e58815 (2013).
  6. Tang, X., et al. The eSNV-detect: a computational system to identify expressed single nucleotide variants from transcriptome sequencing data. Nucleic Acids Res. 42, e172 (2014).
  7. . Preparing Libraries for Sequencing on the MiSeq® Available from: https://support.illumina.com/content/dam/illumina-support/documents/documentation/system_documentation/miseq/preparing-libraries-for-sequencing-on-miseq-15039740-d.pdf (2013)
  8. . MiSeq® Reagent Kit v2 Reagen Preparation Guide Available from: https://support.illumina.com/downloads/miseq_reagent_kit_reagent_preparation_guide.html (2012)
  9. Kim, D., et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).
  10. Li, H., et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 25, 2078-2079 (2009).
  11. DeLuca, D. S., et al. RNA-SeQC: RNA-seq metrics for quality control and process optimization. Bioinformatics. 28, 1530-1532 (2012).
  12. Dobin, A., et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 29, 15-21 (2013).
  13. Van der Auwera, G. A., et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics. 11, 11.10.1-11.10.33 (2013).
  14. Trapnell, C., et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 28, 511-515 (2010).
  15. Iyer, M. K., Chinnaiyan, A. M., Maher, C. A. ChimeraScan: a tool for identifying chimeric transcription in sequencing data. Bioinformatics. 27, 2903-2904 (2011).
  16. Kim, D., Salzberg, S. L. TopHat-Fusion: an algorithm for discovery of novel fusion transcripts. Genome Biol. 12, R72 (2011).
  17. Fernandez-Cuesta, L., et al. Identification of novel fusion genes in lung cancer using breakpoint assembly of transcriptome sequencing data. Genome Biol. 16, 7 (2015).
  18. Shugay, M., Ortiz de Mendibil, ., Vizmanos, I., L, J., Novo, F. J. Oncofuse: a computational framework for the prediction of the oncogenic potential of gene fusions. Bioinformatics. 29, 2539-2546 (2013).
  19. Clark, M. B., et al. Quantitative gene profiling of long noncoding RNAs with targeted RNA sequencing. Nat Methods. 12, 339-342 (2015).
  20. Cieslik, M., et al. The use of exome capture RNA-seq for highly degraded RNA with application to clinical cancer sequencing. Genome Res. , (2015).
  21. Cabanski, C. R., et al. cDNA hybrid capture improves transcriptome analysis on low-input and archived samples. J Mol Diagn. 16, 440-451 (2014).
  22. Costa, C., Gimenez-Capitan, A., Karachaliou, N., Rosell, R. Comprehensive molecular screening: from the RT-PCR to the RNA-seq. Transl Lung Cancer Res. 2, 87-91 (2013).
  23. Zhao, W., et al. Comparison of RNA-Seq by poly (A) capture, ribosomal RNA depletion, and DNA microarray for expression profiling. BMC Genomics. 15, 419 (2014).
check_url/fr/54090?article_type=t

Play Video

Citer Cet Article
Martin, D. P., Miya, J., Reeser, J. W., Roychowdhury, S. Targeted RNA Sequencing Assay to Characterize Gene Expression and Genomic Alterations. J. Vis. Exp. (114), e54090, doi:10.3791/54090 (2016).

View Video