Summary

Ekkokardiografiske Strategier og Protokoller for omfattende fænotypisk karakterisering af Valvular hjertesygdom i mus

Published: February 14, 2017
doi:

Summary

This protocol provides a detailed description of the echocardiographic approach for comprehensive phenotyping of heart and heart valve function in mice.

Abstract

The aim of this manuscript and accompanying video is to provide an overview of the methods and approaches used for imaging heart valve function in rodents, with detailed descriptions of the appropriate methods for anesthesia, the echocardiographic windows used, the imaging planes and probe orientations for image acquisition, the methods for data analysis, and the limitations of emerging technologies for the evaluation of cardiac and valvular function. Importantly, we also highlight several future areas of research in cardiac and heart valve imaging that may be leveraged to gain insights into the pathogenesis of valve disease in preclinical animal models. We propose that using a systematic approach to evaluating cardiac and heart valve function in mice can result in more robust and reproducible data, as well as facilitate the discovery of previously underappreciated phenotypes in genetically-altered and/or physiologically-stressed mice.

Introduction

Aldring er forbundet med progressive stigninger i hjerte-kar-forkalkning 1. Hæmodynamisk signifikant aortaklappen stenose påvirker 3% af befolkningen over 65 år 2, og patienter med selv moderat aortaklappen stenose (peak hastighed på 3-4 m / s) har en 5 års hændelse overlevelse på mindre end 40% 3. I øjeblikket er der ingen effektive behandlinger til at bremse udviklingen af aortaklappen forkalkning, og kirurgisk aortaklappen udskiftning er den eneste behandling for avanceret aortaklappen stenose 4.

Undersøgelser med henblik på at opnå en dybere forståelse af de mekanismer, der bidrager til initiering og progression af aortaklappen forkalkning er et centralt første skridt i hen imod farmakologiske og ikke-kirurgiske metoder til at styre aortaklappen stenose 5, 6. genetiskely-ændrede mus har spillet en stor rolle i udviklingen af vores forståelse af de mekanismer, der bidrager til en lang række sygdomme og er nu kommer frem i forgrunden af mekanistiske undersøgelser med henblik på at forstå biologi aortaklappen stenose 6, 7, 8. I modsætning til andre cardiovaskulære sygdomme, såsom atherosklerose og hjerteinsufficiens-hvor standardprotokoller til evaluering vaskulære og ventrikelfunktion er for det meste veletablerede-der er unikke udfordringer forbundet med in vivo-fænotypebestemmelse af hjerteklap funktion i mus. Mens seneste anmeldelser har givet grundige drøftelser vedrørende de fordele og ulemper talrige billedbehandling og invasive modaliteter anvendes til at vurdere ventil funktion i gnavere 9, 10, 11, til dato, er vi ikke bekendt med en offentliggørelse, der giver en omfattende, trin-for-trin-protokollen for fænotypning hjerteklap funktion i mus.

Formålet med dette håndskrift er at beskrive de metoder og protokoller til fænotype hjerteklap funktion i mus. Alle metoder og procedurer er blevet godkendt af Mayo Clinic Institutional Animal Care og brug Udvalg. Vigtige komponenter i denne protokol omfatter anæstesidybden, evalueringen af ​​hjertefunktionen, og evalueringen af ​​hjerteklap funktion. Vi håber, at denne rapport vil ikke kun tjene til at vejlede efterforskerne interesseret i at forfølge forskning inden for hjerteklapsygdom, men vil også starte en national og international dialog relateret til protokol standardisering for at sikre data reproducerbarhed og validitet i dette hastigt voksende område. Vigtigere, vellykket billeddannelse ved hjælp af høj opløsning ultralyd systemer kræver et praktisk kendskab til de principper om sonografi (og terminologi almindeligvis anvendes i sonografi), en forståelse af den grundlæggende Principles af hjerte fysiologi, og betydelig erfaring med sonografi at give mulighed for præcis og tidsbesparende vurdering af hjertefunktionen hos gnavere.

Protocol

1. Klargør Materialer og udstyr (tabel 1 og figur 1) Tænd for ultralyd maskine. Indtast dyret id, dato, og tid (for serielle billeddannelse eksperimenter) og andre relevante oplysninger. Brug en højfrekvent ultralyd transducer, 40 MHz for billedbehandling mus mindre end ~ 20 g eller 30 MHz for mus større end ~ 20 g. Slut platform til elektrokardiogram (EKG) overvåge EKG gating af billeddannelse til visse modaliteter. BEMÆRK: Kritisk, giver dette også mulighed for den øjeblik…

Representative Results

Eksempler på billeder, der rutinemæssigt opnået fra dyr cardiac ultrasound imaging er inkluderet i dette håndskrift. En illustration af transducer placering på dyrets bryst er tilvejebragt for at give læseren en klar forståelse af, hvor transduceren er positioneret til at opnå de billeder som beskrevet. Et fotografi af ultralyd laboratorie set-up er også medtaget for at understrege vigtigheden af ​​det rette udstyr, især ultralyd transducer skal anvendes, og metoden til an?…

Discussion

Induktion af anæstesi

Korrekt induktion og vedligeholdelse af anæstesi er kritisk for nøjagtig vurdering af ændringer hjerteklap og hjertefunktion hos mus. I betragtning af den hurtige induktion af anæstesi fremkaldes af isofluran og den forholdsvis lange wash-out tid af denne bedøvelse efter dyb anæstesi, bruger vi ikke en stand-alone anæstesi kammer til induktion. Stedet, som nævnt detaljeret ovenfor, er dyrene ledes direkte til anæstesi kegle, som tillader hurtig o…

Divulgations

The authors have nothing to disclose.

Acknowledgements

This work was supported by NIH grants HL111121 (JDM) and TR000954 (JDM).

Materials

High resolution ultrasound machine VisualSonics, Fujifilm Vevo 2100 
Isoflurane diffuser (capable of delivering 1 % to 1.5 % isoflurane mixed with 1 L/min 100% O2 VisualSonics, Fujifilm N/A
Transducers for small mice (550D) or larger mice (400) MicroScan, VisualSonics, Fujifilm MS 550D, MS 400
Animal platform VisualSonics, Fujifilm 11503
Advanced physiological monitoring unit VisualSonics, Fujifilm N/A
Isoflurane Terrell NDC 66794-019-10
Nose cone and tubing connected to isoflurane diffuser and 100% O2 Custom Engineered in-house
Hair razor Andis Super AGR+ vet pack clipper AD65340
Ultrasound gel Parker Laboratories REF 01-08
Electrode gel  Parker Laboratories REF 15-25
Adhesive tapes Fisher Laboratories 1590120B
Paper towels

References

  1. Ngo, D. T., et al. Determinants of occurrence of aortic sclerosis in an aging population. JACC Cardiovasc Imaging. 2, 919-927 (2009).
  2. Nkomo, V. T. Epidemiology and prevention of valvular heart diseases and infective endocarditis in Africa. Heart. 93, 1510-1519 (2007).
  3. Amato, M. C., Moffa, P. J., Werner, K. E., Ramires, J. A. Treatment decision in asymptomatic aortic valve stenosis: role of exercise testing. Heart. 86, 381-386 (2001).
  4. Bonow, R. O., et al. Focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 1998 Guidelines for the Management of Patients With Valvular Heart Disease): endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. Circulation. 118, e523-e661 (2008).
  5. Yutzey, K. E., et al. Calcific aortic valve disease: a consensus summary from the Alliance of Investigators on Calcific Aortic Valve Disease. Arterioscler Thromb Vasc Biol. 34, 2387-2393 (2014).
  6. Rajamannan, N. M. Calcific aortic valve disease: cellular origins of valve calcification. Arterioscler Thromb Vasc Biol. 31, 2777-2778 (2011).
  7. Weiss, R. M., Miller, J. D., Heistad, D. D. Fibrocalcific aortic valve disease: opportunity to understand disease mechanisms using mouse models. Circ Res. 113, 209-222 (2013).
  8. Sider, K. L., Blaser, M. C., Simmons, C. A. Animal models of calcific aortic valve disease. Int J Inflam. 2011, 364310 (2011).
  9. Miller, J. D., Weiss, R. M., Heistad, D. D. Calcific aortic valve stenosis: methods, models, and mechanisms. Circ Res. 108, 1392-1412 (2011).
  10. Ram, R., Mickelsen, D. M., Theodoropoulos, C., Blaxall, B. C. New approaches in small animal echocardiography: imaging the sounds of silence. Am J Physiol Heart Circ Physiol. 301, H1765-H1780 (2011).
  11. Moran, A. M., Keane, J. F., Colan, S. D. Influence of pressure and volume load on growth of aortic annulus and left ventricle in patients with critical aortic stenosis. J Am Coll Cardiol. 37, 471a (2001).
  12. Thibault, H. B., et al. Noninvasive assessment of murine pulmonary arterial pressure: validation and application to models of pulmonary hypertension. Circ Cardiovasc Imaging. 3, 157-163 (2010).
  13. Baumgartner, H., et al. Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. J Am Soc Echocardiogr. 22, 1-23 (2009).
  14. Lang, R. M., et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 16, 233-270 (2015).
  15. Devereux, R. B., Reichek, N. Echocardiographic determination of left ventricular mass in man. Anatomic validation of the method. Circulation. 55, 613-618 (1977).
  16. Ommen, S. R., et al. Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: A comparative simultaneous Doppler-catheterization study. Circulation. 102, 1788-1794 (2000).
  17. Tei, C., et al. New index of combined systolic and diastolic myocardial performance: a simple and reproducible measure of cardiac function–a study in normals and dilated cardiomyopathy. J Cardiol. 26, 357-366 (1995).
  18. Koshizuka, R., et al. Longitudinal strain impairment as a marker of the progression of heart failure with preserved ejection fraction in a rat model. J Am Soc Echocardiogr. 26, 316-323 (2013).
  19. Ishizu, T., et al. Left ventricular strain and transmural distribution of structural remodeling in hypertensive heart disease. Hypertension. 63, 500-506 (2014).
  20. Yamada, S., et al. Induced pluripotent stem cell intervention rescues ventricular wall motion disparity, achieving biological cardiac resynchronization post-infarction. J Physiol. 591, 4335-4349 (2013).
  21. Andrews, T. G., Lindsey, M. L., Lange, R. A., Aune, G. J. Cardiac Assessment in Pediatric Mice: Strain Analysis as a Diagnostic Measurement. Echocardiography. 31, 375-384 (2014).
  22. Ferferieva, V., et al. Assessment of strain and strain rate by two-dimensional speckle tracking in mice: comparison with tissue Doppler echocardiography and conductance catheter measurements. Eur Heart J Cardiovasc Imaging. 14, 765-773 (2013).
  23. Fine, N. M., et al. Left and right ventricular strain and strain rate measurement in normal adults using velocity vector imaging: an assessment of reference values and intersystem agreement. Int J Cardiovasc Imaging. 29, 571-580 (2013).
  24. Pernot, M., Fujikura, K., Fung-Kee-Fung, S. D., Konofagou, E. E. ECG-gated, mechanical and electromechanical wave imaging of cardiovascular tissues in vivo. Ultrasound Med Biol. 33, 1075-1085 (2007).
  25. Liu, J. H., Jeng, G. S., Wu, T. K., Li, P. C. ECG triggering and gating for ultrasonic small animal imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 53, 1590-1596 (2006).
  26. Monin, J. L., et al. Low-gradient aortic stenosis: operative risk stratification and predictors for long-term outcome: a multicenter study using dobutamine stress hemodynamics. Circulation. , 319-324 (2003).
check_url/fr/54110?article_type=t

Play Video

Citer Cet Article
Casaclang-Verzosa, G., Enriquez-Sarano, M., Villaraga, H. R., Miller, J. D. Echocardiographic Approaches and Protocols for Comprehensive Phenotypic Characterization of Valvular Heart Disease in Mice. J. Vis. Exp. (120), e54110, doi:10.3791/54110 (2017).

View Video