Summary

ゲノム編集中<em>アステュアナクスmexicanus</em>使用して転写活性化因子のようなエフェクターヌクレアーゼ(TALENs)

Published: June 20, 2016
doi:

Summary

遺伝子標的化突然変異誘発は、ゲノム編集の技術を使用して、生物の幅広いことが可能です。ここで、我々はアステュアナクスmexicanus、表面の魚や洞窟魚が含まれて魚の種におけるエフェクターヌクレアーゼ(TALENs)などの転写活性化因子を用いて標的遺伝子の突然変異誘発のためのプロトコルを示しています。

Abstract

Identifying alleles of genes underlying evolutionary change is essential to understanding how and why evolution occurs. Towards this end, much recent work has focused on identifying candidate genes for the evolution of traits in a variety of species. However, until recently it has been challenging to functionally validate interesting candidate genes. Recently developed tools for genetic engineering make it possible to manipulate specific genes in a wide range of organisms. Application of this technology in evolutionarily relevant organisms will allow for unprecedented insight into the role of candidate genes in evolution. Astyanax mexicanus (A. mexicanus) is a species of fish with both surface-dwelling and cave-dwelling forms. Multiple independent lines of cave-dwelling forms have evolved from ancestral surface fish, which are interfertile with one another and with surface fish, allowing elucidation of the genetic basis of cave traits. A. mexicanus has been used for a number of evolutionary studies, including linkage analysis to identify candidate genes responsible for a number of traits. Thus, A. mexicanus is an ideal system for the application of genome editing to test the role of candidate genes. Here we report a method for using transcription activator-like effector nucleases (TALENs) to mutate genes in surface A. mexicanus. Genome editing using TALENs in A. mexicanus has been utilized to generate mutations in pigmentation genes. This technique can also be utilized to evaluate the role of candidate genes for a number of other traits that have evolved in cave forms of A. mexicanus.

Introduction

形質進化の遺伝的基礎を理解することは、進化の生物学者の重要な研究目標です。かなりの進歩は、形質の発生の根底にある遺伝子座を同定し、(実施例1-3の場合)、これらの遺伝子座内の候補遺伝子を特定してなされました。形質の進化を研究するために使用される多くの生物は現在、遺伝的に扱いやすいではありませんしかし、機能的にこれらの遺伝子の役割をテストすることは困難なままです。ゲノム編集技術の出現が大幅に広範囲の生物の遺伝的操作性を増加しています。転写活性化因子のようなエフェクターヌクレアーゼ(TALENs)とクラスタ化された定期的interspaced短いパリンドロームリピート(CRISPRs)は、(例えば、4月11日のために)多数の生物の遺伝子の標的に変異を生成するために使用されてきました。進化的に関連したシステムに適用されるこれらのツールは、進化生物学者は進化の遺伝的基礎を勉強方法に革命をもたらす可能性を秘めています。

アステュアナクスのmexicanusは、2つの形態で存在する魚の種である:川に生息する表面形状(表面の魚)と複数の洞窟住居形態(洞窟魚)A. mexicanusの洞窟魚は(12に概説されている)表面の魚の祖先から進化しました。洞窟魚の集団味蕾と頭蓋neuromastsの数を増加させ、色素沈着の減少または損失を目の損失を含む形質の数を進化させてきた、そのような学校教育の行動の損失のような行動の変化は、給紙姿勢と過食症13の変化を侵略を増加しました-19。洞窟魚と表面の魚は異系交配できるであり、遺伝的マッピング実験は、洞窟の形質1,20-26のための遺伝子座および候補遺伝子を同定するために行われてきました。いくつかの候補遺伝子は、他の種21または過剰発現27または過渡ノックダウンUでのモデル生物で、細胞培養1,19で洞窟の特性に貢献する機能的役割のためにテストされていますA.でモルフォリノ28を歌いますmexicanus。しかしながら、これらの方法の各々には限界があります。 A.これらの遺伝子の変異対立遺伝子を生成する能力mexicanusは洞窟魚の進化にそれらの機能を理解するために重要です。したがって、A. mexicanusは、ゲノム編集技術の応用のための理想的な候補生物です。

ここでは、Aのゲノム編集のための方法を概説しますmexicanus TALENsを使用。この方法は、表現型および興味29の遺伝子で安定突然変異を有する魚の行を単離するためのモザイク注入創始魚を評価するために使用することができます。

Protocol

すべての動物の手順は、国立衛生研究所のガイドラインに従った、アイオワ州立大学、メリーランド大学の施設内動物管理使用委員会によって承認されました。 1. TALENデザイン TALEN設計ウェブサイトに入力された所望の標的配列。 (例: https://tale-nt.cac.cornell.edu/node/add/talen )。入力は、スペーサ/リピート配列の長さ?…

Representative Results

TALENペア注射は、非相同末端結合(NHEJ)を介して修復することができる二本鎖休憩39で、その結果、特定のDNAヌクレオチドとRVDSの結合、したがってのFokIドメインの二量体化につながります。 NHEJは、多くの場合、挿入または欠失(インデル)につながるエラーを導入しています。インデルはTALEN標的部位を囲む領域を増幅しTALENスペーサ領域内で切断す…

Discussion

長足の進歩は、形質の進化の遺伝的基礎を理解することに向けて、近年で行われています。特徴の数の進化の基礎となる候補遺伝子が同定されたが、それが原因で最も進化興味深い種の遺伝的取り扱いやすさの欠如にインビボでこれらの遺伝子を試験するために困難なままです。ここでは、Aのゲノム編集のための方法を報告しますmexicanus、洞窟動物の進化を研究するため…

Divulgations

The authors have nothing to disclose.

Acknowledgements

この作品は、遺伝学、開発および細胞生物学、アイオワ州立大学の学科によっておよびNIHのグラントEY024941(WJ).DRによって賄われていました。ジェフリーEssnerは、原稿にコメントを提供しました。

Materials

Equipment
Thermocycler
Injection station
Gel apparatus
Needle puller
Nanodrop
Name Company Catalog Number Comments
Supplies
Note: As far as we know, supplies from different companies can be used unless otherwise indicated
Golden Gate TALEN and TAL Effector Kit 2.0 Addgene Kit #1000000024
Fisher BioReagents LB Agar, Miller (Granulated) Fisher BP9724-500
Fisher BioReagents Microbiology Media: LB Broth, Miller Fisher BP1426-500
Teknova TET-15 in 50% EtOH Teknova (ordered through Fisher) 50-843-314
Spectinomycin Dihydrochloride, Fisher BioReagents Fisher BP2957-1
Super Ampicillin (1000x solution) DNA Technologies 6060-1
ThermoScientific X-Gal Solution, ready-to-use Thermo Sci Fermentas Inc (Ordered through Fisher) FERR0941
IPTG, Fisher BioReagents Fisher BP1620-1
Petri dishes Fisher 08-757-13
BsaI New England Biolabs (ordered through Fisher) 50-812-203 Use BsaI, not BsaI-HF (as described in the Golden Gate TALEN and TAL Effector Kit protocol)
BSA New England Biolabs provided with restriction enzymes
10x T4 ligase buffer Promega (ordered through Fisher) PR-C1263
GoTaq Green Master mix Promega (ordered through Fisher) PRM7123 Other Taq can be used, but the reaction should be adjusted accordingly
Quick ligation kit New England Biolabs (ordered through Fisher) 50-811-728 We use Quick Ligase for all TALEN assembly reactions
One Shot TOP10 Chemically Competent E.coli Invitrogen C4040-06 Other chemically competent cells or homemade competent cells can be used
Esp 3I Thermo Sci Fermentas Inc (Ordered through Fisher) FERER0451
Plasmid-Safe ATP-dependent DNase Epicentre (Ordered through Fisher) NC9046399
QIAprep Spin Miniprep Kit Qiagen 27106 The Qiagen kit should be used for the initial plasmid preparation (as described in the Golden Gate TALEN and TAL Effector Kit protocol)
QIAquick PCR Purification Kit Qiagen 28104
GeneMate LE Quick Dissolve Agaraose BioExpress E-3119-125
Sac I Promega (Ordered through Fisher) PR-R6061
mMESSAGE mMACHINE T3 Transcription kit Ambion AM1348M
Rneasy MinElute Cleanup Kit Qiagen 74204
NorthernMax-Gly Sample Loading Dye  Ambion (ordered through Fisher) AM8551
Eliminase Decon (ordered through Fisher) 04-355-32
Fisherbrand Disposable Soda-Lime Glass Pasteur Pipets Fisher 13-678-6B
Standard Glass Capillaries World Precision Instruments 1B100-4
Microcaps Drummond Scientific Company 1-000-0010
Eppendorf Femtotips Microloader Tips for Femtojet Microinjector Eppendorf (ordered through Fisher) E5242956003
Sodium hydroxide Fisher S318-500
Tris base Fisher BP152-1

References

  1. Protas, M. E., et al. Genetic analysis of cavefish reveals molecular convergence in the evolution of albinism. Nat Genet. 38 (1), 107-111 (2006).
  2. Hoekstra, H. E., Hirschmann, R. J., Bundey, R. A., Insel, P. A., Crossland, J. P. A single amino acid mutation contributes to adaptive beach mouse color pattern. Science. 313 (5783), 101-104 (2006).
  3. Chan, Y. F., et al. Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a Pitx1 enhancer. Science. 327 (5963), 302-305 (2010).
  4. Liu, J., et al. Efficient and specific modifications of the Drosophila genome by means of an easy TALEN strategy. J Genet Genomics. 39 (5), 209-215 (2012).
  5. Bannister, S., et al. TALENs mediate efficient and heritable mutation of endogenous genes in the marine annelid Platynereis dumerilii. Génétique. 197 (1), 77-89 (2014).
  6. Lei, Y., et al. Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs). Proc Natl Acad Sci U S A. 109 (43), 17484-17489 (2012).
  7. Bedell, V. M., et al. In vivo genome editing using a high-efficiency TALEN system. Nature. 491 (7422), 114-118 (2012).
  8. Huang, P., et al. Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol. 29 (8), 699-700 (2011).
  9. Ansai, S., et al. Efficient targeted mutagenesis in medaka using custom-designed transcription activator-like effector nucleases. Génétique. 193 (3), 739-749 (2013).
  10. Zhang, X., et al. Isolation of doublesex- and mab-3-related transcription factor 6 and its involvement in spermatogenesis in tilapia. Biol Reprod. 91 (6), 136 (2014).
  11. Wang, H., et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 153 (4), 910-918 (2013).
  12. Gross, J. B. The complex origin of Astyanax cavefish. BMC Evol Biol. 12, 105 (2012).
  13. Wilkens, H. Evolution and genetics of epigean and cave Astyanax fasciatus (Characidae, Pisces) – support for the neutral mutation theory. Evolutionary Biology. 23, 271-367 (1988).
  14. Teyke, T. Morphological differences in neuromasts of the blind cave fish Astyanax hubbsi and the sighted river fish Astyanax mexicanus. Brain Behav Evol. 35 (1), 23-30 (1990).
  15. Schemmel, C. Genetische Untersuchungen zur Evolution des Geschmacksapparates bei cavernicolen Fischen. Z Zool Syst Evolutionforsch. 12, 196-215 (1974).
  16. Burchards, H., Dolle, A., Parzefall, J. Aggressive behavior of an epigean population of Astyanax mexicanus (Characidae, Pisces) and some observations of three subterranean populations. Behavioral Processes. 11, 225-235 (1985).
  17. Parzefall, J., Fricke, D. Alarm reaction and schooling in population hybrids of Astyanax fasciatus (Pisces, Characidae). Memoires e Biospeologie. , 29-32 (1991).
  18. Schemmel, C. Studies on the Genetics of Feeding Behavior in the Cave Fish Astyanax mexicanus F. anoptichthys. Z. Tierpsychol. 53, 9-22 (1980).
  19. Aspiras, A. C., Rohner, N., Martineau, B., Borowsky, R. L., Tabin, C. J. Melanocortin 4 receptor mutations contribute to the adaptation of cavefish to nutrient-poor conditions. Proc Natl Acad Sci U S A. 112 (31), 9668-9673 (2015).
  20. Protas, M., et al. Multi-trait evolution in a cave fish, Astyanax mexicanus. Evol Dev. 10 (2), 196-209 (2008).
  21. Gross, J. B., Borowsky, R., Tabin, C. J. A novel role for Mc1r in the parallel evolution of depigmentation in independent populations of the cavefish Astyanax mexicanus. PLoS Genet. 5 (1), e1000326 (2009).
  22. Yoshizawa, M., Yamamoto, Y., O’Quin, K. E., Jeffery, W. R. Evolution of an adaptive behavior and its sensory receptors promotes eye regression in blind cavefish. BMC Biol. 10, 108 (2012).
  23. Quin, K. E., Yoshizawa, M., Doshi, P., Jeffery, W. R. Quantitative genetic analysis of retinal degeneration in the blind cavefish Astyanax mexicanus. PLoS One. 8 (2), 57281 (2013).
  24. Kowalko, J. E., et al. Convergence in feeding posture occurs through different genetic loci in independently evolved cave populations of Astyanax mexicanus. Proc Natl Acad Sci U S A. 110 (42), 16933-16938 (2013).
  25. Kowalko, J. E., et al. Loss of Schooling Behavior in Cavefish through Sight-Dependent and Sight-Independent Mechanisms. Curr Biol. , (2013).
  26. Gross, J. B., Krutzler, A. J., Carlson, B. M. Complex craniofacial changes in blind cave-dwelling fish are mediated by genetically symmetric and asymmetric loci. Génétique. 196 (4), 1303-1319 (2014).
  27. Yamamoto, Y., Stock, D. W., Jeffery, W. R. Hedgehog signalling controls eye degeneration in blind cavefish. Nature. 431 (7010), 844-847 (2004).
  28. Bilandzija, H., Ma, L., Parkhurst, A., Jeffery, W. R. A potential benefit of albinism in Astyanax cavefish: downregulation of the oca2 gene increases tyrosine and catecholamine levels as an alternative to melanin synthesis. PLoS One. 8 (11), e80823 (2013).
  29. Ma, L., Jeffery, W. R., Essner, J. J., Kowalko, J. E. Genome editing using TALENs in blind Mexican Cavefish, Astyanax mexicanus. PLoS One. 10 (3), e0119370 (2015).
  30. Untergrasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B. C., Remm, M., Rozen, S. G. Primer3- new capabilities and interfaces. Nucleic Acids Res. 40 (15), 115 (2012).
  31. Koressaar, T., Remm, M. Enhancements and modifications of primer design program Primer3. Bioinformatics. 23 (10), 1289-1291 (2007).
  32. Cermak, T., et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 39 (12), 82 (2011).
  33. . Addgene. Golden TALEN assembly Available from: https://www.addgene.org/static/cms/filer_public/98/5a/985a6117-7490-4001-8f6a-24b2cf7b005b/golden_gate_talen_assembly_v7.pdf (2011)
  34. A device to hold zebrafish embryos during microinjection. ZFIN Protocol Wiki Available from: https://wiki.zfin.org/display/prot/A+Device+To+Hold+Zebrafish+Embryos+During+Microinjection (2009)
  35. Hinaux, H., et al. A developmental staging table for Astyanax mexicanus surface fish and Pachon cavefish. Zebrafish. 8 (4), 155-165 (2011).
  36. Schindelin, J., et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 9 (7), 676-682 (2012).
  37. Bitinaite, J., Wah, D. A., Aggarwal, A. K., Schildkraut, I. FokI dimerization is required for DNA cleavage. Proc Natl Acad Sci U S A. 95 (18), 10570-10575 (1998).
  38. Elipot, Y., et al. A mutation in the enzyme monoamine oxidase explains part of the Astyanax cavefish behavioural syndrome. Nat Commun. 5, 3647 (2014).
  39. McGaugh, S. E., et al. The cavefish genome reveals candidate genes for eye loss. Nat Commun. 5, 5307 (2014).
  40. Yoshizawa, M., Goricki, S., Soares, D., Jeffery, W. R. Evolution of a behavioral shift mediated by superficial neuromasts helps cavefish find food in darkness. Curr Biol. 20 (18), 1631-1636 (2010).
  41. Blackburn, P. R., Campbell, J. M., Clark, K. J., Ekker, S. C. The CRISPR system–keeping zebrafish gene targeting fresh. Zebrafish. 10 (1), 116-118 (2013).
  42. Varshney, G. K., et al. High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9. Genome Res. 25 (7), 1030-1042 (2015).
  43. Shin, J., Chen, J., Solnica-Krezel, L. Efficient homologous recombination-mediated genome engineering in zebrafish using TALE nucleases. Development. 141 (19), 3807-3818 (2014).
  44. Ablain, J., Durand, E. M., Yang, S., Zhou, Y., Zon, L. I. A CRISPR/Cas9 vector system for tissue-specific gene disruption in zebrafish. Dev Cell. 32 (6), 756-764 (2015).
  45. Yamamoto, Y., Jeffery, W. R. Central role for the lens in cave fish eye degeneration. Science. 289 (5479), 631-633 (2000).
check_url/fr/54113?article_type=t

Play Video

Citer Cet Article
Kowalko, J. E., Ma, L., Jeffery, W. R. Genome Editing in Astyanax mexicanus Using Transcription Activator-like Effector Nucleases (TALENs). J. Vis. Exp. (112), e54113, doi:10.3791/54113 (2016).

View Video