Summary

经过一蛋白饱和诱变图书馆的功能评价规范利用高通量测序

Published: July 03, 2016
doi:

Summary

我们提出了一个协议为利用高通量测序蛋白的综合单站点饱和突变库功能评估。重要的是,这种方法采用正交引物对复图书馆建设和测序。提供了使用在氨苄青霉素的临床相关剂量选择的TE​​M-1β内酰胺酶代表性结果。

Abstract

Site-directed mutagenesis has long been used as a method to interrogate protein structure, function and evolution. Recent advances in massively-parallel sequencing technology have opened up the possibility of assessing the functional or fitness effects of large numbers of mutations simultaneously. Here, we present a protocol for experimentally determining the effects of all possible single amino acid mutations in a protein of interest utilizing high-throughput sequencing technology, using the 263 amino acid antibiotic resistance enzyme TEM-1 β-lactamase as an example. In this approach, a whole-protein saturation mutagenesis library is constructed by site-directed mutagenic PCR, randomizing each position individually to all possible amino acids. The library is then transformed into bacteria, and selected for the ability to confer resistance to β-lactam antibiotics. The fitness effect of each mutation is then determined by deep sequencing of the library before and after selection. Importantly, this protocol introduces methods which maximize sequencing read depth and permit the simultaneous selection of the entire mutation library, by mixing adjacent positions into groups of length accommodated by high-throughput sequencing read length and utilizing orthogonal primers to barcode each group. Representative results using this protocol are provided by assessing the fitness effects of all single amino acid mutations in TEM-1 at a clinically relevant dosage of ampicillin. The method should be easily extendable to other proteins for which a high-throughput selection assay is in place.

Introduction

诱变早已在实验室用于研究生物系统及其演进的属性,并产生突变蛋白质或微生物与增强的或新的功能。虽然早期的方法在其上产生生物随机突变的方法依赖,重组DNA技术的出现使研究人员能够引入位点特异性方式与DNA选择的变化, ,位点定向诱变1,2。与目前的技 ​​术,一般是在聚合酶链反应(PCR),使用诱变寡核苷酸,它是相对容易的在给定基因3,4-创建并评估突变的小的数字( 例如 ,点突变)。这是更为困难然而,当目标的办法,例如,所有可能的单站点的创建和评估(或更高阶)的突变。

虽然很多已经从早期的研究试图评估大量m的教训在基因utations,所采用的技术往往是费力的,例如要求每个突变评估独立使用的废话抑制5-7株,或在自己的能力量化,由于Sanger测序8的低测序深度有限。在这些研究中所使用的技术已在很大程度上被利用高通量测序技术方法9-12取代。这些概念简单的方法意味着创建包括了大量的突变库,库中经受了功能的屏幕或选择,然后深测序( ,> 10 6排序的顺序读取时)之前获得图书馆,选择后。以这种方式,大量的突变的表型或健身效果,表示为在每个突变体的群体频率的变化,可以同时和更定量评估。

我们之前推出了SIMP( ,全蛋白饱和诱变文库)用于评估蛋白质的所有可能的单氨基酸突变的文库,适用于基因的一个长度比测序长文件的方法读取长度11,13:首先,每个氨基酸位置是随机通过位点定向诱变的PCR。在此过程中,该基因被分成与由测序平台收纳总长度连续位置组成的组。诱变的PCR产物为每个组,然后组合,并且每个基团独立地进行选择和高通量测序。通过保持序列和测序读长在基因突变的位置之间的对应关系,这种方法也有最大化的测序深度的优点:当一个可以简单地序列中短窗这样的库,不要拆开成团( 例如 ,通过一个标准的猎枪。测序方法),最读取得到的将是野生型和由此m个浪费测序吞吐量ajority( 例如,在100个氨基酸(300 bp)的窗户测序一个500个氨基酸的蛋白的一个全蛋白饱和诱变文库,以最低80%的读出将是野生型序列)。

这里,提出了一种协议,它利用高通量测序为全蛋白饱和诱变文库的功能评估,使用上述方法( 图1中所述)。重要的是,我们引入的正交的引物的使用量在库中克隆过程条形码每个序列组,这允许它们被复用到一个库,同时进行筛选或选择,然后解复用为深度测序。由于序列组不进行选择独立,这减少了工作量,并确保各突变经历选择的相同水平。 TEM-1β内酰胺酶,其赋予对高层次性的酶β内酰胺类抗生素( 氨苄青霉素)的细菌被用作模型系统14-16。的协议是用于TEM-1在大肠杆菌中一个全蛋白饱和诱变文库的评估中描述大肠杆菌下,在对一个临床剂量氨苄青霉素(50微克/毫升)17,18的近似的血清水平的选择。

Protocol

注:参见图1的协议纲要。在协议中几个步骤和试剂需要安全措施(与“注意”表示)。用本品前请咨询材料安全数据表。所有的协议步骤都在室温,除非其他指示进行。 1.准备文化传媒和板准备并通过高压灭菌1升纯化水100毫升超级最优肉汤(SOB; 表1)灭菌,1升的Luria-BERTANI肉汤(LB; 表2)和1升的LB琼脂( 表3)。另外…

Representative Results

对于含有正交引发位点的五个修饰的pBR322质粒的质粒图谱(pBR322_OP1 – pBR322_OP5)示于图2A。为了测试正交的引物是否是特定使用每对正交引物单独进行的PCR,与所有五个pBR322_OP1-5质粒一起,或与所有质粒减去匹配正交引物对中的质粒。当被包括在匹配的质粒仅获得正确的产物,并在它的缺失( 图2B),没有得到任何大小的产物。 <p class="jove_conten…

Discussion

这里一个协议被用于进行全蛋白饱和诱变文库的功能评估,使用高通量测序技术说明。该方法的一个重要方面是在克隆过程中使用的正交引物。简单地说,每个氨基酸位置由诱变PCR随机,并混合在一起成为其组合序列长度由高通量测序收容位置的基团。这些基团被克隆入含有成对正交引发位点,混合在一起,并进行选择的质粒载体,然后使用正交引物解复用,并随后深测序。由于突变测序中阅读?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

R.R. acknowledges support from the National Institutes of Health (RO1EY018720-05), the Robert A. Welch Foundation (I-1366), and the Green Center for Systems Biology.

Materials

Typtone Research Products Intl. Corp. T60060-1000.0
Yeast extract Research Products Intl. Corp. Y20020-500.0
Sodium chloride Fisher Scientific BP358-212
Potassium chloride Sigma-Aldrich P9333-500G
Magnesium sulfate Sigma-Aldrich M7506-500G
Agar Fisher Scientific BP1423-500
Tetracycline hydrochloride Sigma-Aldrich T7660-5G
petri plates Corning 351029
MATLAB  Mathworks http://www.mathworks.com/products/matlab/
Oligonucleotide primers Integrated DNA Technologies https://www.idtdna.com/pages/products/dna-rna/custom-dna-oligos 25 nmol scale, standard desalting
pBR322_AvrII available upon request pBR322 plasmid modified to contain AvrII restriction site downstream of the TEM-1 gene
pBR322_OP1 – pBR322_OP5 available upon request five modified pBR322 plasmids each containing a pair of orthogonal priming sites
Q5 high-fidelity DNA polymerase New England Biolabs M0491L includes 5X PCR buffer and PCR additive (GC enhancer)
15 mL conical tube Corning 430025
Multichannel pipettes (Eppendorf ResearchPlus) Eppendorf
PCR plate, 96 well Fisher Scientific 14230232
96 well plate seal Excel Scientific F-96-100
Veriti 96-well thermal cycler Applied Biosystems 4375786
6X gel loading dye New England Biolabs B7024S
Agarose Research Products Intl. Corp. 20090-500.0
Ethidium bromide Bio-Rad 161-0433
UV transilluminator (FOTO/Analyst ImageTech) Fotodyne Inc. http://www.fotodyne.com/content/ImageTech_gel_documentation
EB buffer Qiagen 19086
96-well black-walled, clear bottom assay plates Corning 3651
Lambda phage DNA New England Biolabs N3011S
PicoGreen dsDNA reagent Invitrogen P7581 dsDNA quantitation reagent, used in protocol step 2.2.4
Victor 3V microplate reader PerkinElmer
DNA purification kit Zymo Research D4003
Microcentrifuge tubes Corning 3621
Long-wavelength UV illuminator Fisher Scientific FBUVLS-80
Agarose gel DNA extraction buffer Zymo Research D4001-1-100
AatII New England Biolabs R0117S
AvrII New England Biolabs R0174L
T4 DNA ligase New England Biolabs M0202S
EVB100 electrocompetent E. coli Avidity EVB100
Electroporator (E. coli Pulser) Bio-Rad 1652102
Electroporation cuvettes Bio-Rad 165-2089
Spectrophotometer (Ultrospec 3100 pro) Amersham Biosciences 80211237
50 mL conical tubes Corning 430828
Plasmid purification kit Macherey-Nagel 740588.25
8 well PCR strip tubes Axygen 321-10-551
Qubit dsDNA HS assay kit Invitrogen Q32854 dsDNA quantitation reagent
Qubit assay tubes Invitrogen Q32856
Qubit fluorometer Invitrogen Q32866
Ampicillin sodium salt Akron Biotechnology 50824296
MiSeq reagent kit v2 (500 cycles) Illumina MS-102-2003
MiSeq desktop sequencer Illumina http://www.illumina.com/systems/miseq.html alternatively, one could sequence on Illumina HiSeq platform
FLASh software John Hopkins University – open source http://ccb.jhu.edu/software/FLASH/ software to merge paired-end reads from next-generation sequencing data
AatII_F GATAATAATGGTTTCTTAGACGTCAGGTGGC
AvrII_R CTTCACCTAGGTCCTTTTAAATTAAAAATGAAG
AvrII_F CTTCATTTTTAATTTAAAAGGACCTAGGTGAAG
AatII_OP1_R ACCTGACGTCCGTATTTCAACTGTCCGGTCTAAGAAACCATTATTATCATGACATTAAC
AatII_OP2_R ACCTGACGTCCGCTCACGGAGTGTACTAATTAAGAAACCATTATTATCATGACATTAAC
AatII_OP3_R ACCTGACGTCGTACGTCTGAACTTGGGACTTAAGAAACCATTATTATCATGACATTAAC
AatII_OP4_R ACCTGACGTCCCGTTCTCGATACCAAGTGATAAGAAACCATTATTATCATGACATTAAC
AatII_OP5_R ACCTGACGTCGTCCGTCGGAGTAACAATCTTAAGAAACCATTATTATCATGACATTAAC
OP1_F GACCGGACAGTTGAAATACG
OP1_R CGACGTACAGGACAATTTCC
OP2_F ATTAGTACACTCCGTGAGCG
OP2_R AGTATTAGGCGTCAAGGTCC
OP3_F AGTCCCAAGTTCAGACGTAC
OP3_R GAAAAGTCCCAATGAGTGCC
OP4_F TCACTTGGTATCGAGAACGG
OP4_R TATCACGGAAGGACTCAACG
OP5_F AGATTGTTACTCCGACGGAC
OP5_R TATAACAGGCTGCTGAGACC
Group1_F ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNGCATTTTGCCTACCGGTTTTTGC
Group1_R GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNTCTTGCCCGGCGTCAAC
Group2_F ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNGAACGTTTTCCAATGATGAGCAC
Group2_R GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNGTCCTCCGATCGTTGTCAGAAG
Group3_F ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNAGTAAGAGAATTATGCAGTGCTGCC
Group3_R GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNTCGCCAGTTAATAGTTTGCGC
Group4_F ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNCCAAACGACGAGCGTGACAC
Group4_R GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNGCAATGATACCGCGAGACCC
Group5_F ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNCGGCTGGCTGGTTTATTGC
Group5_R GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNTATATGAGTAAACTTGGTCTGACAG
501_F AATGATACGGCGACCACCGAGATCTACACTATAGCCTACACTCTTTCCCTACACGAC
502_F AATGATACGGCGACCACCGAGATCTACACATAGAGGCACACTCTTTCCCTACACGAC
503_F AATGATACGGCGACCACCGAGATCTACACCCTATCCTACACTCTTTCCCTACACGAC
504_F AATGATACGGCGACCACCGAGATCTACACGGCTCTGAACACTCTTTCCCTACACGAC
505_F AATGATACGGCGACCACCGAGATCTACACAGGCGAAGACACTCTTTCCCTACACGAC
701_R CAAGCAGAAGACGGCATACGAGATCGAGTAATGTGACTGGAGTTCAGACGTG
702_R CAAGCAGAAGACGGCATACGAGATTCTCCGGAGTGACTGGAGTTCAGACGTG

References

  1. Hutchison, C. A., et al. Mutagenesis at a specific position in a DNA sequence. J Biol Chem. 253 (18), 6551-6560 (1978).
  2. Mullis, K. B., Faloona, F. A. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 155, 335-350 (1987).
  3. Papworth, C., Bauer, J. C., Braman, J., Wright, D. A. Site-directed mutagenesis in one day with >80% efficiency. Strategies. 9 (3), 3-4 (1996).
  4. Higuchi, R., Krummel, B., Saiki, R. K. A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res. 16 (15), 7351-7367 (1988).
  5. Rennell, D., Bouvier, S. E., Hardy, L. W., Poteete, A. R. Systematic mutation of bacteriophage T4 lysozyme. J Mol Biol. 222 (1), 67-88 (1991).
  6. Markiewicz, P., Kleina, L. G., Cruz, C., Ehret, S., Miller, J. H. Genetic studies of the lac repressor. XIV. Analysis of 4000 altered Escherichia coli lac repressors reveals essential and non-essential residues, as well as ‘spacers’ which do not require a specific sequence. J Mol Biol. 240 (5), 421-433 (1994).
  7. Kleina, L. G., Miller, J. H. Genetic studies of the lac repressor. XIII. Extensive amino acid replacements generated by the use of natural and synthetic nonsense suppressors. J Mol Biol. 212 (2), 295-318 (1990).
  8. Huang, W., Petrosino, J., Hirsch, M., Shenkin, P. S., Palzkill, T. Amino acid sequence determinants of beta-lactamase structure and activity. J Mol Biol. 258 (4), 688-703 (1996).
  9. Fowler, D. M., et al. High-resolution mapping of protein sequence-function relationships. Nat Methods. 7 (9), 741-746 (2010).
  10. Hietpas, R. T., Jensen, J. D., Bolon, D. N. Experimental illumination of a fitness landscape. Proc Natl Acad Sci U S A. 108 (19), 7896-7901 (2011).
  11. McLaughlin, R. N., Poelwijk, F. J., Raman, A., Gosal, W. S., Ranganathan, R. The spatial architecture of protein function and adaptation. Nature. 491 (7422), 138-142 (2012).
  12. Deng, Z., et al. Deep sequencing of systematic combinatorial libraries reveals beta-lactamase sequence constraints at high resolution. J Mol Biol. 424 (3-4), 150-167 (2012).
  13. Stiffler, M. A., Hekstra, D. R., Ranganathan, R. Evolvability as a Function of Purifying Selection in TEM-1 beta-Lactamase. Cell. 160 (5), 882-892 (2015).
  14. Matagne, A., Lamotte-Brasseur, J., Frere, J. M. Catalytic properties of class A beta-lactamases: efficiency and diversity. Biochem J. 330 (Pt2), 581-598 (1998).
  15. Salverda, M. L., De Visser, J. A., Barlow, M. Natural evolution of TEM-1 beta-lactamase: experimental reconstruction and clinical relevance. FEMS Microbiol Rev. 34 (6), 1015-1036 (2010).
  16. Weinreich, D. M., Delaney, N. F., Depristo, M. A., Hartl, D. L. Darwinian evolution can follow only very few mutational paths to fitter proteins. Science. 312 (5770), 111-114 (2006).
  17. Stewart, S. M., Fisher, M., Young, J. E., Lutz, W. Ampicillin levels in sputum, serum, and saliva. Thorax. 25 (3), 304-311 (1970).
  18. Giachetto, G., et al. Ampicillin and penicillin concentration in serum and pleural fluid of hospitalized children with community-acquired pneumonia. Pediatr Infect Dis J. 23 (7), 625-629 (2004).
  19. Ambler, R. P., et al. A standard numbering scheme for the class A beta-lactamases. Biochem J. 276 (Pt 1), 269-270 (1991).
  20. Magoc, T., Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies). Bioinformatics. 27 (21), 2957-2963 (2011).
  21. Melamed, D., Young, D. L., Gamble, C. E., Miller, C. R., Fields, S. Deep mutational scanning of an RRM domain of the Saccharomyces cerevisiae poly(A)-binding protein. RNA. 19 (11), 1537-1551 (2013).
  22. Bank, C., Hietpas, R. T., Jensen, J. D., Bolon, D. N. A systematic survey of an intragenic epistatic landscape. Mol Biol Evol. 32 (1), 229-238 (2015).
  23. Dove, S. L., Joung, J. K., Hochschild, A. Activation of prokaryotic transcription through arbitrary protein-protein contacts. Nature. 386 (6625), 627-630 (1997).
  24. Romero, P. A., Tran, T. M., Abate, A. R. Dissecting enzyme function with microfluidic-based deep mutational scanning. Proc Natl Acad Sci U S A. 112 (23), 7159-7164 (2015).
check_url/fr/54119?article_type=t

Play Video

Citer Cet Article
Stiffler, M. A., Subramanian, S. K., Salinas, V. H., Ranganathan, R. A Protocol for Functional Assessment of Whole-Protein Saturation Mutagenesis Libraries Utilizing High-Throughput Sequencing. J. Vis. Exp. (113), e54119, doi:10.3791/54119 (2016).

View Video