Summary

一个表型养生为用于研究衰老的人类疾病基因牵连转基因小鼠

Published: July 14, 2016
doi:

Summary

A reverse-genetics approach to understanding gene families associated with human disease is presented, using mouse as a model system, and the subsequent mouse phenotyping schedule is described. Because mice defective in a gene of interest, HtrA2, manifested Parkinsonian symptoms, the phenotyping regimen is focused on identifying neurological defects.

Abstract

Age-related diseases are becoming increasingly prevalent and the burden continues to grow as our population ages. Effective treatments are necessary to lessen the impact of debilitating conditions but remain elusive in many cases. Only by understanding the causes and pathology of diseases associated with aging, can scientists begin to identify potential therapeutic targets and develop strategies for intervention. The most common age-related conditions are neurodegenerative disorders such as Parkinson’s disease and blindness. Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly. Genome wide association studies have previously identified loci that are associated with increased susceptibility to this disease and identified two regions of interest: complement factor H (CFH) and the 10q26 locus, where the age-related maculopathy susceptibility 2 (ARMS2) and high-temperature requirement factor A1 (HtrA1) genes are located. CFH acts as a negative regulator of the alternative pathway (AP) of the complement system while HtrA1 is an extracellular serine protease. ARMS2 is located upstream of HtrA1 in the primate genome, although the gene is absent in mice. To study the effects of these genes, humanized knock-in mouse lines of Cfh and ARMS2, knockouts of Cfh, HtrA1, HtrA2, HtrA3 and HtrA4 as well as a conditional neural deletion of HtrA2 were generated. Of all the genetically engineered mice produced only mice lacking HtrA2, either systemically or in neural tissues, displayed clear phenotypes. In order to examine these mice thoroughly and systematically, an initial phenotyping schedule was established, consisting of a series of tests related to two main diseases of interest: AMD and Parkinson’s. Genetically modified mice can be subjected to appropriate experiments to identify phenotypes that may be related to the associated diseases in humans. A phenotyping regimen with a mitochondrial focus is presented here alongside representative results from the tests of interest.

Introduction

年龄相关的疾病正在成为现代社会越来越普遍。随着医疗科学的进步和平均寿命的延长,人口不断老化和这些疾病负担的增加。有效的治疗是必要的,以减轻衰弱的状况的影响,但在许多情况下,仍然难以实现。只有了解的原因和与衰老相关的疾病病理上的科学家开始识别潜在的治疗目标和制定战略的干预。常见年龄相关病症包括神经变性疾病如帕金森氏病(PD)和年龄相关性黄斑变性(AMD)。 PD为在人类中引起的神经变性的最普遍的运动障碍。多数PD患者表现出症状,如后5​​0岁静止性震颤,运动迟缓和刚度。早发性也已病例的约10%观察到。

AMD是失明的主要原因老年人,逐渐损害感光体,并在眼睛的视网膜色素上皮细胞(RPE)。中央视力受损,但周边视力一般不受影响。有两种形式AMD的。在“干”的形式,被称为RPE和Bruch膜(BM)之间的玻璃膜疣形式外蛋白沉积,导致地理萎缩和中央视力模糊。更严重的“湿”的形式从新生血管形成的结果,从对面的BM脉络膜入RPE和光感受器层,并可能导致hamorrhaging导致视网膜组织永久损坏视网膜下方。全基因组关联研究先前已经确定了与增加的易感性相关的这种疾病,并确定感兴趣的两个区域的位点:1号染色体上和10q26基因座,其中,与年龄相关的黄斑病的易感性2(ARMS2)和补体因子H(CFH)高温需求因素A1(HTRA1)基因位于1-5 </sup>。这些等位基因的组合增加的AMD的可能性以剂量依赖的方式和具体的SNP可与AMD的3-6的湿或干的形式被优先相关联。

CFH作为通过抑制C3的激活补体系统的替代途径(AP)的负调节物。单核苷酸多态性(SNP)已被链接到的AMD的增加的风险,导致外显子9与组氨酸酪氨酸402的交换,由于为T到C的取代1。在AMD据信该AP是由于CFH功能丧失,但是否与SNP起因果作用尚不清楚misregulated。一种假设是,带正电荷的组氨酸被认为是否定CFH结合至相互作用的蛋白质的C-反应蛋白和硫酸肝素1,7的能力。 CFH Y402H的体外研究提供相互矛盾的结果在变体之间的功能差异,并在体内工作<EM> CFH – / 表达人源化的CFH正在进行8只小鼠。 ARMS2位于灵长类基因组HTRA1的上游,尽管基因在小鼠中不存在。 HTRA1是丝氨酸蛋白酶,但ARMS2的特征较差。在AMD相关基因座的SNP之间的连锁不平衡使得难以确定在这个区域中的基因的单个突变的风险的贡献,但最近的工作已表明,它是HTRA1的过表达,而不是ARMS2,导致新血管形成和视网膜下蛋白沉积物9-11。然而,在该基因座的基因的紧密接近可允许不能使用随机插入转基因进行研究的相互作用。

除了AMD,丝氨酸蛋白酶将hTRA家族已经与许多人类疾病有关。所有将hTRA蛋白含有丝氨酸蛋白酶结构域,随后被至少一个C末端PDZ结构域。 HTRA1,HtrA3和HtrA4共享GReatest同源性,包括一个信号肽,胰岛素样生长因子结合结构域,Kazal蛋白酶抑制剂域,丝氨酸蛋白酶结构域和PDZ结构域的。 HtrA2的具有不同的N-末端,线粒体定位序列,跨膜结构域的组成和凋亡抑制结合结构域,随后通过蛋白酶和PDZ结构域12-16。哺乳动物HTRA1由底物诱导重构在其蛋白酶结构域17-20的活性位点调节,HtrA2的也可通过丝氨酸蛋白酶和PDZ结构域,抑制蛋白酶活性21之间的交互调制。有趣的是,PDZ结构域不会出现类似赋予调控HtrA3 16。将hTRA蛋白酶也可以由外在因素调节:它最近证实存在HTRA1之间调节相互作用和protoporphyrins 22和HtrA2的可通过磷酸化后的p38MAP激酶的激活来调节通路在一个PINK1依赖性23。将hTRA家族在小鼠的个别成员的缺失已经被记录在案,但机械效应大多不清楚部分是由于缺乏明显的表型。

HTRA1在蛋白质的质量控制的一个重要的功能和它的错误调节或突变已经与许多不同的人类疾病,包括关节炎,癌症和AMD 3,4,24-32的风险增加相关联。在神经组织HtrA2的功能的丧失已在人类和小鼠的PD表型相关联,而其从非神经组织的结果在加速损失老化33-37。 HtrA3失调已经与疾病,包括先兆子痫和某些类型的癌症38,39相关联。上调HtrA4已子痫前期患者,但敲除小鼠的胎盘被观察到不显示明显的表型40,41。在一些基因敲除小鼠中观察到的缺乏表型的已假定为的将hTRA家族成员之间的补偿的结果:它被认为是既HtrA4和HTRA1与TGF-β家族蛋白的相互作用,在HtrA4 41的缺失允许补偿由HTRA1。同样地,它被认为是由于HTRA1和HtrA3具有高度域同源性的,他们可能具有互补功能42。然而,已经提出,将hTRA蛋白可以具有部分拮抗作用,竞争来调节公共目标43。

为了进一步研究这些风险因素生成3人性化敲入鼠标线。在CFH TM1(CFH * 9)jhohCFH TM2(CFH * 9)jhoh,所述CFH基因的外显子9被替换为人类同源物的外显子9。CFH TM1(CFH * 9)jhoh编码非疾病相关的酪氨酸残基402位置,而CFH TM2(CFH * 9)jhoh携带Y402H,风险相关的SNP。在ARMS2 tm1jhoh人类ARMS2序列靶向HTRA1的上游的区域。放置在基因序列,但包括UBIC启动子的下游的上游A loxP的侧翼STOP序列通过杂交到OzCre小鼠,这表示ROSA26启动子的控制下Cre重组酶,如前所述34切除。除了 ​​这些敲入线,生成对CFHHTRA1(CFH tm1jhohHTRA1 tm1jhoh),以及其他已知的将hTRA家族成员条件性敲除等位基因:HtrA2的 (HtrA2的tm1jhoh),HtrA3(HtrA3 tm1jhoh)HtrA4( HtrA4 tm1jhoh)。外显子3,HTRA1;种系击倒了通过杂交OzCre小鼠动物改造以侧翼与loxP位点,使得缺失导致活性域(CFH的移码和/或缺失特定外显子的外显子在2-3,HtrA2的 :外显子2-4,HtrA3;外显子3,HtrA4;外显子4-6)34,41。 HtrA2的的神经缺失,使用下的巢蛋白启动子控制Cre重组酶删除(HtrA2的FLOX;的Tg(NES-CRE)1Kln / J),也被描述34。唯一欠缺的HtrA2的小鼠,无论是全身或神经组织,清晰的显示表型,与帕金森表型呈现。

由于一些感兴趣的这些基因都假定被定位于线粒体11,44-47,和产生HtrA2的缺失帕金森表型,具有线粒体和神经焦点的表型方案在此描述并提供从感兴趣的试验的代表性结果。为了检查产生的彻底调查人,年龄相关的疾病,系统建立的初始表型时间表遗传工程小鼠,由一系列的相关的两个主要的测试感兴趣的疾病:AMD和帕金森氏。

Protocol

伦理学声明:涉及动物的研究均符合的指南在耶鲁大学护理和实验动物使用和动物管理和使用委员会(IACUC)的健康建议全国学院进行。 1.转基因小鼠的行为测试注意:所有的小鼠应经受相同的测试方案,以习惯的差异限制为处理。测试应该在一天中的各个时间的同时进行。 新生儿后肢测试注:后肢测试是从出生后一天(P)4每天进行,以P10?…

Representative Results

本节描述了使用这些方法获得的结果的例子。在后肢试验,拉尝试次数所作和延迟落在相加超过每天两次连续测试。这种测试可用于比较基因不同的组来区分具有降低的神经肌肉强度HtrA2的tm1jhoh小鼠(HTRA2 KO)小鼠在图1A – B表明在拉和延迟的数量没有变化,从P4-6落入随后减小在P7-10神经肌肉强度,相比于同窝(HTRA2 WT)。随着年龄的…

Discussion

强大的治疗是需要限制衰弱与人类老化条件的影响,但他们仍然是难以捉摸的许多条件。为了识别潜在的治疗目标和制定干预策略的原因和与衰老相关疾病的病理首先必须了解。不是所有的转基因小鼠立即表现为,与相关的所关注的疾病,即使那些基因先前已挂在人类研究中的条件明确​​表型。因此更系统的调查是必需的,转基因小鼠中应当进行适当的实验,以确定可能在人类中进行相关的相?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

资助这项研究来自Rosebay医学基金会和耶鲁大学医学院院长的研究基金(JH)。我们感谢克莱尔·柯尼希博士与行为实验的帮助。基因是在Ozgene的(澳大利亚珀斯)生成的工程小鼠线。

Materials

Ethanol Decon (Fisher Scientific) 435541
50 ml conical tube Fisher Scientific 1443222
cotton balls Walmart
heat mat Sunbeam 0000756-500-000
Holding tray (ice cube tray) Walmart
Electronic stopwatch GOGO PC396
Plexiglass box constructed in workshop 12" by 12" 
Vixia HF R400 Camcorder Canon 8155B004
9oz Clear Cups Walmart
1/4 inch wire mesh Home Depot 204331884 (online) / 554219 (in store) 12" by 12" 
Bubble wrap VWR 470092-416
Straight specimen forceps VWR 82027-438
Fine-tip dissecting forceps VWR 82027-408
Fine scissors VWR 82027-578
Paraformaldehyde 16% solution Electron Microscopy Sciences 15710
10x phosphate buffered saline pH 7.4 American Bioanalytical AB11072-04000
Sucrose JT Baker 4072-01
superfrost slides Fisher Scientific 12-550-15
Hematoxylin Stain Solution Fisher Scientific (Ricca) 353016
Eosin Y Stain Solution Fisher Scientific (Ricca) 2845-32
Tris hydrochloride Sigma T3253
Tris American Bioanalytical AB02000-01000
Nicotinamide adenine dinucleotide, reduced disodium salt hydrate Sigma N8129
Nitrotetrazolium Blue chloride Sigma N6876
Acetone JT Baker 9006-05
Sodium phosphate monobasic monohydrate Sigma S9638
Sodium phosphate dibasic heptahydrate Sigma S9390
Sodium succinate dibasic hexahydrate Sigma S2378
VectaMount aqueous mounting medium Vector Labs H-5501-60
Cover glass Fisher Scientific 12-545-M 60 x 24 mm
AxioImager A1 microscope Zeiss
Video camera tripod Amazon
Optimal Cutting Temperature (OCT) Fischer Scientific 23730571
Cryostat Sectioning  Machine Leica  CM1900 Discontinued but since replaced by CM1950

References

  1. Klein, R. J., et al. Complement factor H polymorphism in age-related macular degeneration. Science. 308, 385-389 (2005).
  2. Zareparsi, S., et al. Strong association of the Y402H variant in complement factor H at 1q32 with susceptibility to age-related macular degeneration. Am J Hum Genet. 77, 149-153 (2005).
  3. Yang, Z., et al. A variant of the HTRA1 gene increases susceptibility to age-related macular degeneration. Science. 314, 992-993 (2006).
  4. Dewan, A., et al. HTRA1 promoter polymorphism in wet age-related macular degeneration. Science. 314, 989-992 (2006).
  5. Francis, P. J., Zhang, H., Dewan, A., Hoh, J., Klein, M. L. Joint effects of polymorphisms in the HTRA1, LOC387715/ARMS2, and CFH genes on AMD in a Caucasian population. Mol Vis. 14, 1395-1400 (2008).
  6. Cameron, D. J., et al. HTRA1 variant confers similar risks to geographic atrophy and neovascular age-related macular degeneration. Cell Cycle. 6, 1122-1125 (2007).
  7. Herbert, A. P., et al. Structure shows that a glycosaminoglycan and protein recognition site in factor H is perturbed by age-related macular degeneration-linked single nucleotide polymorphism. J Biol Chem. 282, 18960-18968 (2007).
  8. Ding, J. D., et al. Expression of human complement factor h prevents age-related macular degeneration-like retina damage and kidney abnormalities in aged cfh knockout mice. Am J Pathol. 185, 29-42 (2015).
  9. Nakayama, M., et al. Overexpression of HtrA1 and exposure to mainstream cigarette smoke leads to choroidal neovascularization and subretinal deposits in aged mice. Invest Ophthalmol Vis Sci. 55, 6514-6523 (2014).
  10. Liu, J., Hoh, J. Postnatal overexpression of the human ARMS2 gene does not induce abnormalities in retina and choroid in transgenic mouse models. Invest Ophthalmol Vis Sci. 56, 1387-1388 (2015).
  11. Kanda, A., et al. A variant of mitochondrial protein LOC387715/ARMS2, not HTRA1, is strongly associated with age-related macular degeneration. Proc Natl Acad Sci U S A. 104, 16227-16232 (2007).
  12. Zumbrunn, J., Trueb, B. Primary structure of a putative serine protease specific for IGF-binding proteins. FEBS Lett. 398, 187-192 (1996).
  13. Clausen, T., Southan, C., Ehrmann, M. The HtrA family of proteases: implications for protein composition and cell fate. Mol Cell. 10, 443-455 (2002).
  14. Nie, G. Y., Hampton, A., Li, Y., Findlay, J. K., Salamonsen, L. A. Identification and cloning of two isoforms of human high-temperature requirement factor A3 (HtrA3), characterization of its genomic structure and comparison of its tissue distribution with HtrA1 and HtrA2. Biochem J. 371, 39-48 (2003).
  15. Runyon, S. T., et al. Structural and functional analysis of the PDZ domains of human HtrA1 and HtrA3. Protein Sci. 16, 2454-2471 (2007).
  16. Glaza, P., et al. Structural and Functional Analysis of Human HtrA3 Protease and Its Subdomains. PLoS One. 10, e0131142. 10, e0131142 (2015).
  17. Dolmans, D. E., Fukumura, D., Jain, R. K. Photodynamic therapy for cancer. Nat Rev Cancer. 3, 380-387 (2003).
  18. Grau, S., et al. Implications of the serine protease HtrA1 in amyloid precursor protein processing. Proc Natl Acad Sci U S A. 102, 6021-6026 (2005).
  19. Lecha, M., Puy, H., Deybach, J. C. Erythropoietic protoporphyria. Orphanet J Rare Dis. 4, 19 (2009).
  20. Ethirajan, M., Chen, Y., Joshi, P., Pandey, R. K. The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem Soc Rev. 40, 340-362 (2011).
  21. Li, W., et al. Structural insights into the pro-apoptotic function of mitochondrial serine protease HtrA2/Omi. Nat Struct Biol. 9, 436-441 (2002).
  22. Jo, H., Patterson, V., Stoessel, S., Kuan, C. Y., Hoh, J. Protoporphyrins enhance oligomerization and enzymatic activity of HtrA1 serine protease. PLoS One. 9, 115362 (2014).
  23. Bogaerts, V., et al. Genetic variability in the mitochondrial serine protease HTRA2 contributes to risk for Parkinson disease. Hum Mutat. 29, 832-840 (2008).
  24. Baldi, A., et al. The HtrA1 serine protease is down-regulated during human melanoma progression and represses growth of metastatic melanoma cells. Oncogene. 21, 6684-6688 (2002).
  25. Oka, C., et al. HtrA1 serine protease inhibits signaling mediated by Tgfbeta family proteins. Development. 131, 1041-1053 (2004).
  26. Chien, J., et al. A candidate tumor suppressor HtrA1 is downregulated in ovarian cancer. Oncogene. 23, 1636-1644 (2004).
  27. Grau, S., et al. The role of human HtrA1 in arthritic disease. J Biol Chem. 281, 6124-6129 (2006).
  28. Chien, J., et al. Serine protease HtrA1 modulates chemotherapy-induced cytotoxicity. J Clin Invest. 116, 1994-2004 (2006).
  29. Chien, J., Campioni, M., Shridhar, V., Baldi, A. HtrA serine proteases as potential therapeutic targets in cancer. Curr Cancer Drug Targets. 9, 451-468 (2009).
  30. Hara, K., et al. Association of HTRA1 mutations and familial ischemic cerebral small-vessel disease. N Engl J Med. 360, 1729-1739 (2009).
  31. Jones, A., et al. Increased expression of multifunctional serine protease, HTRA1, in retinal pigment epithelium induces polypoidal choroidal vasculopathy in mice. Proc Natl Acad Sci U S A. 108, 14578-14583 (2011).
  32. Vierkotten, S., Muether, P. S., Fauser, S. Overexpression of HTRA1 leads to ultrastructural changes in the elastic layer of Bruch’s membrane via cleavage of extracellular matrix components. PLoS One. 6, e22959 (2011).
  33. Strauss, K. M., et al. Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson’s disease. Hum Mol Genet. 14, 2099-2111 (2005).
  34. Patterson, V. L., et al. Neural-specific deletion of Htra2 causes cerebellar neurodegeneration and defective processing of mitochondrial OPA1. PLoS One. 9, 115789 (2014).
  35. Jones, J. M., et al. Loss of Omi mitochondrial protease activity causes the neuromuscular disorder of mnd2 mutant mice. Nature. 425, 721-727 (2003).
  36. Martins, L. M., et al. Neuroprotective role of the Reaper-related serine protease HtrA2/Omi revealed by targeted deletion in mice. Mol Cell Biol. 24, 9848-9862 (2004).
  37. Kang, S., et al. Loss of HtrA2/Omi activity in non-neuronal tissues of adult mice causes premature aging. Cell Death Differ. 20, 259-269 (2013).
  38. Dynon, K., et al. HtrA3 as an early marker for preeclampsia: specific monoclonal antibodies and sensitive high-throughput assays for serum screening. PLoS One. 7, e45956 (2012).
  39. Singh, H., et al. HtrA3 Is Downregulated in Cancer Cell Lines and Significantly Reduced in Primary Serous and Granulosa Cell Ovarian Tumors. J Cancer. 4, 152-164 (2013).
  40. Inagaki, A., et al. Upregulation of HtrA4 in the placentas of patients with severe pre-eclampsia. Placenta. 33, 919-926 (2012).
  41. Liu, J., Li, Y., Hoh, J. Generation and characterization of mice with a conditional null allele of the HtrA4 gene. Mol Med Rep. , (2015).
  42. Bowden, M. A., Di Nezza-Cossens, L. A., Jobling, T., Salamonsen, L. A., Nie, G. Serine proteases HTRA1 and HTRA3 are down-regulated with increasing grades of human endometrial cancer. Gynecol Oncol. 103, 253-260 (2006).
  43. Chen, Y. Y., et al. Functional antagonism between high temperature requirement protein A (HtrA) family members regulates trophoblast invasion. J Biol Chem. 289, 22958-22968 (2014).
  44. Fritsche, L. G., et al. Age-related macular degeneration is associated with an unstable ARMS2 (LOC387715) mRNA. Nat Genet. 40, 892-896 (2008).
  45. Beleford, D., Rattan, R., Chien, J., Shridhar, V. High temperature requirement A3 (HtrA3) promotes etoposide- and cisplatin-induced cytotoxicity in lung cancer cell lines. J Biol Chem. 285, 12011-12027 (2010).
  46. Hegde, R., et al. Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J Biol Chem. 277, 432-438 (2002).
  47. Martins, L. M., et al. The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a reaper-like motif. J Biol Chem. 277, 439-444 (2002).
  48. Gage, G. J., Kipke, D. R., Shain, W. Whole animal perfusion fixation for rodents. J Vis Exp. , (2012).
  49. Fischer, A. H., Jacobson, K. A., Rose, J., Zeller, R. Hematoxylin and eosin staining of tissue and cell sections. CSH Protoc. 2008. 2008, (2008).
  50. Wahlsten, D. A developmental time scale for postnatal changes in brain and behavior of B6D2F2 mice. Brain Res. 72, 251-264 (1974).
  51. El-Khodor, B. F., et al. Identification of a battery of tests for drug candidate evaluation in the SMNDelta7 neonate model of spinal muscular atrophy. Exp Neurol. 212, 29-43 (2008).
  52. Brand, M. D., Nicholls, D. G. Assessing mitochondrial dysfunction in cells. Biochem J. 435, 297-312 (2011).
  53. Chance, B., Williams, G. R., Holmes, W. F., Higgins, J. Respiratory enzymes in oxidative phosphorylation. V. A mechanism for oxidative phosphorylation. J Biol Chem. 217, 439-451 (1955).
  54. Kamo, N., Muratsugu, M., Hongoh, R., Kobatake, Y. Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J Membr Biol. 49, 105-121 (1979).
  55. Brown, G. C., Brand, M. D. Proton/electron stoichiometry of mitochondrial complex I estimated from the equilibrium thermodynamic force ratio. Biochem J. 252, 473-479 (1988).
check_url/fr/54136?article_type=t&slug=a-phenotyping-regimen-for-genetically-modified-mice-used-to-study

Play Video

Citer Cet Article
Patterson, V. L., Thompson, B. S., Cherry, C., Wang, S., Chen, B., Hoh, J. A Phenotyping Regimen for Genetically Modified Mice Used to Study Genes Implicated in Human Diseases of Aging. J. Vis. Exp. (113), e54136, doi:10.3791/54136 (2016).

View Video