Summary

全面解决方案处理的无机纳米晶体光伏器件的制造

Published: July 08, 2016
doi:

Summary

这个协议描述无机纳米晶体层的合成和溶液沉积由层产生对非导电性表面上的薄膜电子器件。溶剂稳定的油墨能够产生在玻璃基板上通过旋涂和喷涂以下后沉积配体交换和烧结完成的光伏器件。

Abstract

我们证明用于从旋制备完全溶液处理无机太阳能电池的方法和喷雾纳米油墨的涂层沉积。对于光活性吸收层,胶体CdTe和CdSe纳米晶(3-5纳米)使用的惰性热喷射技术合成和沉淀清洗以除去过量的起始试剂。同样,金的纳米晶体(3-5纳米)的环境条件下合成并溶解在有机溶剂中。另外,对于透明导电氧化铟锡(ITO)膜前体溶液是从与反应性氧化剂成对铟和锡的盐的溶液制备。层 – 层,这些解决方案被沉积到下面的退火(200-400℃),以建立所述纳米晶体的太阳能电池(玻璃/ ITO /的CdSe / CdTe的/金)的玻璃基板。预退火配体交换所需的硒化镉和碲化镉纳米晶体薄膜的地方在NH 4氯浸:甲醇代替长链本土联赛NDS小无机氯阴离子。 氯化铵 (多个)被发现充当烧结反应(作为无毒替代常规的CdCl 2(S)处理)的催化剂加热时导致晶粒生长(136±39纳米)。所制备的膜的厚度和粗糙度的特征在于用SEM和光学轮廓。 FTIR用于确定在烧结之前配体交换的程度,和XRD用来验证每种材料的结晶度和相。紫外/可见光谱显示高可见光透过ITO层和热退火后红移的镉硫族化合物纳米晶体的吸收传输。完成器件的电流 – 电压曲线之下模拟一个太阳照度测定。在沉积技术和配位体交换过程中所用的试剂的微小差异已显示出对器件性能产生深远的影响。在这里,我们研究CHEMI的影响卡尔(烧结和配体交换剂)和光生伏打器件的性能物理处理(溶液浓度,喷雾压力,退火时间和退火温度)。

Introduction

由于其独特的新兴性质,无机纳米晶体的油墨已经在广泛的电子设备,包括光电,1找到的应用程序 6发光二极管,7,8电容器9和晶体管10这是由于出色的电子的组合和无机材料和纳米级的溶液相容的光学性质。散装无机材料通常不溶于,因此仅限于高温,低气压真空沉积。然而,在用有机配位体壳的纳米制备时,这些材料可分散在有机溶剂中,并从溶液中沉积(滴,浸涂,旋,喷雾涂层)。这种自由与电子设备外套大和不规则表面减少了这些技术的成本,同时也不断扩大可能的特殊应用。6,11 </suP> 12

镉(II),碲化(碲化镉),镉(II)的硒化物(硒化镉),镉(II)的硫化物(CDS)和氧化锌的溶液处理(ZnO)的无机半导体的有源层,导致到达效率(ƞ)光伏器件为金属碲化镉肖特基结的CdTe /铝(ƞ= 5.15%)13,14和异质结的CdS / CdTe的(ƞ= 5.73%),15的CdSe / CdTe的(ƞ= 3.02%),16,17的ZnO /碲化镉(ƞ= 7.1 %,12%)。18,19在相反的散装CdTe器件真空沉积,这些纳米晶体膜必须经过配体交换之后沉积以除去天然和绝缘长链有机配位体通过薄膜禁止有效的电子传输。此外,烧结CD-(S,硒,碲)必须在一个合适的盐的催化剂的存在下在加热过程中发生。最近,有人˚Found即无毒氯化铵(NH 4 Cl)的可以用于此目的作为用于通常使用的镉(Ⅱ)氯化物置换(CDCL 2)20通过在氯化铵沉积的纳米晶体薄膜浸渍:甲醇溶液,与暴露于热活化氯化铵烧结催化剂同时发生的配位体交换反应。这些制备的薄膜被加热层-层来构建光活性层的所需的厚度。21

在透明导电膜的最新进展(金属纳米线,石墨烯,碳纳米管,燃烧处理铟锡氧化物)和导电性金属纳米晶体的油墨导致的建立在任意的非导电表面的柔性或弯曲的电子设备的制造。22,23在此介绍中,我们证明包括有源层(CdTe和CdSe纳米晶),每个前体油墨溶液的制备中,transpa租导电氧化物电极( ,氧化铟掺杂的锡,ITO)和背面金属接触以从溶液中处理完全构建完成的无机太阳能电池。24在这里,我们突出显示非导电性的喷涂工艺和器件层图案形成结构玻璃。这种详细的视频协议旨在帮助研究者谁是设计和建造的解决方案处理后的太阳能电池;然而,这里所描述的相同的技术可应用于广泛的电子设备。

Protocol

注意:使用前请咨询各相关材料安全数据表(MSDS)。许多前体的解决方案和产品都是有害或致癌。应特别注意针对由于出现的相比,他们的同行批量独特的安全担忧的纳米材料。适当的防护设备应在此过程中可以穿在任何时候(护目镜,面罩,手套,实验室外套,长裤和封闭趾鞋)。 1.前体纳米晶油墨的合成 的CdSe和CdTe油墨18,25…

Representative Results

小角度X射线衍射图案被用来验证退火纳米晶体膜( 图1A)的结晶度和相位。如果微晶尺寸低于100纳米,其晶体直径可以用Scherrer公式来估算(式1)中,用扫描电子显微镜(SEM)证实, 其中,d是平均微晶直径,K是该材料的无量纲形状因子,β是在布拉格角θ的X射线衍射(XRD)峰的半峰全宽。 ?…

Discussion

总之,这个协议提供了涉及构建处理的电子装置从一个喷雾或旋涂沉积的溶液的关键步骤的准则。在这里,我们突出显示溶液加工的透明导电氧化铟锡(ITO)薄膜上的非导电性的玻璃基板的新方法。一个浅显蚀刻过程之后,各个电极可以前喷雾沉积光活性层而形成。使用层 – 层技术,硒化镉和碲化镉纳米晶体可以从喷枪在环境条件下被沉积在空气中。配体交换和热处理后,最后的非透明导电性金?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

The Office of Naval Research (ONR) is gratefully acknowledged for financial support. A portion of this work was conducted while Professor Townsend held a National Research Council (NRC) Postdoctoral Fellowship at the Naval Research Laboratory and is grateful for internal support from St. Mary’s College of Maryland.

Materials

Oleic acid, 90% Sigma Aldrich 364525
1-octadecene, 90% Sigma Aldrich O806 Technical grade
Trioctylphosphine (TOP), 90% Sigma Aldrich 117854 Air sensitive
Trimethylsilyl chloride, 99.9% Sigma Aldrich 92360 Air and water sensitive
Se, 99.5+% Sigma Aldrich 209651
NH4Cl, 99% Sigma Aldrich 9718
CdCl2, 99.9% Sigma Aldrich 202908 Highly toxic
CdO, 99.99% Strem 202894 Highly toxic
Te, 99.8% Strem 264865
In(NO3)3.2.85H2O, 99.99% Sigma Aldrich 326127-50G
SnCl2.2H2O, 99.9% Sigma Aldrich 431508
NH4OH Sigma Aldrich 320145 Caustic
NH4NO3, 99% Sigma Aldrich A9642
HAuCl4.3H2O, 99.9% Sigma Aldrich 520918
Tetraoctylammonium bromide (TMA-Br) Sigma Aldrich 294136
Toluene, 99.8% Sigma Aldrich 244511
Hexanethiol, 95% Sigma Aldrich 234192
NaBH4, 96% Sigma Aldrich 71320
Hexanes, 98.5% Sigma Aldrich 650544
Ethanol, 99.5% Sigma Aldrich 459844
Methanol, anhydrous, 99.8% Sigma Aldrich 322415
1-propanol, 99.5% Sigma Aldrich 402893
2-propanol, 99.5% Sigma Aldrich 278475
Pyridine, > 99% Sigma Aldrich 360570 Purified by distillation
Heptane Sigma Aldrich 246654
chloroform > 99% Sigma Aldrich 372978
Acetone Sigma Aldrich 34850
Glass microscope slides Fisher 12-544-4 Cut with glass cutter
Gravity Fed Airbrush Paasche VSR90#1
Syringe needle Fisher CAD4075
Solar Simulator Testing Station Newport PVIV-1A
Software Oriel PVIV 2.0
Round bottom flask Sigma Aldrich Z723134
Round bottom flask Sigma Aldrich Z418668
Polytetrafluoroethylene (PTFE) syringe filter  Sigma Aldrich Z259926
Polyamide tape Kapton KPT-1/8
Cellophane tape Scotch 810 Tape
Polypropylene centrifuge tube Sigma Aldrich CLS430290
Silver epoxy MG Chemicals 8331-14G

References

  1. Debnath, R., Bakr, O., Sargent, E. H. Solution-processed colloidal quantum dot photovoltaics: A perspective. Energy Environ. Sci. 4, 4870-4881 (2011).
  2. Tang, J., Sargent, E. H. Infrared Colloidal Quantum Dots for Photovoltaics: Fundamentals and Recent Progress. Adv. Mater. 23, 12-29 (2011).
  3. Ning, Z., Dong, H., Zhang, Q., Voznyy, O., Sargent, E. H. Solar Cells Based on Inks of n-Type Colloidal Quantum Dots. ACS Nano. 8, 10321-10327 (2014).
  4. Yoon, W., et al. Enhanced Open-Circuit Voltage of PbS Nanocrystal Quantum Dot Solar Cells. Sci. Rep. 3, (2013).
  5. Jiaoyan, Z., et al. Enhancement of open-circuit voltage and the fill factor in CdTe nanocrystal solar cells by using interface materials. Nanotechnology. 25, 365203 (2014).
  6. Kramer, I. J., et al. Efficient Spray-Coated Colloidal Quantum Dot Solar Cells. Adv. Mater. 27, 116-121 (2015).
  7. Shirasaki, Y., Supran, G. J., Bawendi, M. G., Bulovic, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photonics. 7, 13-23 (2013).
  8. Demir, H. V., et al. Quantum dot integrated LEDs using photonic and excitonic color conversion. Nano Today. 6, 632-647 (2011).
  9. Yu, G., et al. Solution-Processed Graphene/MnO2 Nanostructured Textiles for High-Performance Electrochemical Capacitors. Nano Lett. 11, 2905-2911 (2011).
  10. Ridley, B. A., Nivi, B., Jacobson, J. M. All-Inorganic Field Effect Transistors Fabricated by Printing. Science. 286, 746-749 (1999).
  11. Habas, S. E., Platt, H. A. S., van Hest, M. F. A. M., Ginley, D. S. Low-Cost Inorganic Solar Cells: From Ink To Printed Device. Chem. Rev. 110, 6571-6594 (2010).
  12. Townsend, T. K., Yoon, W., Foos, E. E., Tischler, J. G. Impact of Nanocrystal Spray Deposition on Inorganic Solar Cells. ACS Appl. Mater. Interfaces. 6, 7902-7909 (2014).
  13. Olson, J. D., Rodriguez, Y. W., Yang, L. D., Alers, G. B., Carter, S. A. CdTe Schottky diodes from colloidal nanocrystals. Appl. Phys. Lett. 96, 242103 (2010).
  14. Sun, S., Liu, H., Gao, Y., Qin, D., Chen, J. Controlled synthesis of CdTe nanocrystals for high performanced Schottky thin film solar cells. J. Mater. Chem. 22, 19207-19212 (2012).
  15. Chen, Z., et al. Efficient inorganic solar cells from aqueous nanocrystals: the impact of composition on carrier dynamics. RSC Adv. 5, 74263-74269 (2015).
  16. Gur, I., Fromer, N. A., Geier, M. L., Alivisatos, A. P. Air-stable all-inorganic nanocrystal solar cells processed from solution. Science. 310, 462-465 (2005).
  17. Ju, T., Yang, L., Carter, S. Thickness dependence study of inorganic CdTe/CdSe solar cells fabricated from colloidal nanoparticle solutions. J. Appl. Phys. 107, (2010).
  18. MacDonald, B. I., et al. Layer-by-Layer Assembly of Sintered CdSexTe1-x Nanocrystal Solar Cells. ACS Nano. 6, 5995-6004 (2012).
  19. Crisp, R. W., et al. Nanocrystal Grain Growth and Device Architectures for High-Efficiency CdTe Ink-Based Photovoltaics. ACS Nano. 8, 9063-9072 (2014).
  20. Townsend, T. K., et al. Safer salts for CdTe nanocrystal solution processed solar cells: the dual roles of ligand exchange and grain growth. J. Mater. Chem. A. 3, 13057-13065 (2015).
  21. Jasieniak, J., MacDonald, B. I., Watkins, S. E., Mulvaney, P. Solution-Processed Sintered Nanocrystal Solar Cells via Layer-by-Layer Assembly. Nano Lett. 11, 2856-2864 (2011).
  22. Hecht, D. S., Hu, L. B., Irvin, G. Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures. Adv. Mater. 23, 1482-1513 (2011).
  23. Kim, M. G., Kanatzidis, M. G., Facchetti, A., Marks, T. J. Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nat. Mater. 10, 382-388 (2011).
  24. Townsend, T. K., Foos, E. E. Fully solution processed all inorganic nanocrystal solar cells. Phys. Chem. Chem. Phys. 16, 16458-16464 (2014).
  25. Yu, W. W., Peng, X. Formation of High-Quality CdS and Other II-VI Semiconductor Nanocrystals in Noncoordinating Solvents: Tunable Reactivity of Monomers. Angew. Chem. 114, 2474-2477 (2002).
  26. Brust, M., Walker, M., Bethell, D., Schiffrin, D. J., Whyman, R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid-Liquid system. J. Chem. Soc., Chem. Commun. , 801-802 (1994).
  27. Smits, F. M. Measurement of Sheet Resistivities with the Four-Point Probe. Bell Sys. Tech. J. 37, 711-718 (1958).
  28. Yoon, W., Townsend, T. K., Lumb, M. P., Tischler, J. G., Foos, E. E. Sintered CdTe Nanocrystal Thin-films: Determination of Optical Constants and Application in Novel Inverted Heterojunction Solar Cells. IEEE Trans. Nanotechnol. 13, 551-556 (2014).
  29. Foos, E. E., Yoon, W., Lumb, M. P., Tischler, J. G., Townsend, T. K. Inorganic Photovoltaic Devices Fabricated Using Nanocrystal Spray Deposition. ACS Appl. Mater. Interfaces. 5, 8828-8832 (2013).
  30. Nag, A., et al. Metal-free Inorganic Ligands for Colloidal Nanocrystals: S2-, HS-, Se2-, HSe-, Te2-, HTe-, TeS32-, OH-, and NH2- as Surface Ligands. J. Am. Chem. Soc. 133, 10612-10620 (2011).
  31. Panthani, M. G., et al. High Efficiency Solution Processed Sintered CdTe Nanocrystal Solar Cells: The Role of Interfaces. Nano Lett. 14, 670-675 (2014).
check_url/fr/54154?article_type=t

Play Video

Citer Cet Article
Townsend, T. K., Durastanti, D., Heuer, W. B., Foos, E. E., Yoon, W., Tischler, J. G. Fabrication of Fully Solution Processed Inorganic Nanocrystal Photovoltaic Devices. J. Vis. Exp. (113), e54154, doi:10.3791/54154 (2016).

View Video