Summary

Nanoformulated分子の送達を研究するためのモデル:ラット血液脳関門を通過して、FITCロードフェリチンのin vitro浸透

Published: August 22, 2016
doi:

Summary

A method to establish an in vitro model of blood-brain barrier based on a co-culture of rat brain microvascular endothelial cells and astrocytes is described and validated. This system proved to be a valid tool to study the effect of nanoformulation on the trans-barrier permeation of fluorescent molecules.

Abstract

Brain microvascular endothelial cells, supported by pericytes and astrocytes endfeet, are responsible for the low permeation of large hydrosoluble drugs through the blood-brain barrier (BBB), causing difficulties for effective pharmacological therapies. In recent years, different strategies for promoting brain targeting have aimed to improve drug delivery and activity at this site, including innovative nanosystems for drug delivery across the BBB. In this context, an in vitro approach based on a simplified cellular model of the BBB provides a useful tool to investigate the effect of nanoformulations on the trans-BBB permeation of molecules. This study describes the development of a double-layer BBB, consisting of co-cultured commercially available primary rat brain microvascular endothelial cells and astrocytes. A multiparametric approach for the validation of the model, based on the measurement of the transendothelial electrical resistance and the apparent permeability of a high molecular weight dextran, is also described. As proof of concept for the employment of this BBB model to study the effect of different nanoformulations on the translocation of fluorescent molecules across the barrier, we describe the use of fluorescein isothiocyanate (FITC), loaded into ferritin nanoparticles. The ability of ferritins to improve the trans-BBB permeation of FITC was demonstrated by flux measurements and confocal microscopy analyses. The results suggest this is a useful system for validating nanosystems for delivery of drugs across the BBB.

Introduction

薬理学的治療に対する中枢神経系(CNS)の疾患( すなわち 、癌、てんかん、うつ病、統合失調症およびHIV関連神経障害)の抵抗は、血液脳関門(BBB)を横切る困難な薬物透過を含む様々な異なるメカニズムによるものです。 BBBは、血液中を循環する物質から脳組織を分離する境界です。この障壁の中で、周皮細胞およびアストロサイトエンドフィートでサポートされている脳微小血管内皮細胞(BMECs)の層が、ダ1 400よりも高い分子量を有するものを水溶性の薬剤に対するBBBの高い選択性に責任があります。他の薬物関連耐性機構は、CNSへの薬物の浸透を減少させ、脳2から自分の押し出しを容易にするために、協働薬物排出トランスポーター(P-糖タンパク質及び多剤耐性タンパク質)のBMECsの存在にリンクされています。

過去十年間で、ナノテクノロジーの手法の多くは、BBB 3-6にわたって薬物を送達するの臨床的および生物学的な課題に応えるために開発されてきました。この文脈では、フェリチンナノスフィア(FNN)は、完全に革新的かつ有望なソリューションを表しています。 FNNは8nmで内径の中空球状構造で配置されている24の自己集合フェリチン(FN)モノマーの12 nmの球体です。フェリチンサブユニットは、酸性pHで分解し、種々の有機分子をカプセル化することができるように、中性のpHをもたらすことにより、形状記憶様式で再構築することができます。したがって、FNNは、多機能性薬物送達システム7,8の開発のための興味深いモデルを表します。また、FNNは、これらの細胞9の管腔側膜上に発現されるトランスフェリン受容体(TfRと)1、の特異的認識にBMECsのおかげと相互作用することができます。

これまで、BBBのin vitroモデル異なるがオード開発されていますrは、様々な薬物、BBBに向かって毒性、または排出トランスポーターとの分子の相互作用にトランスBBBの透過性を解明します。確かに、これらのモデルは、 インビトロで有効であると考えているin vivo試験に進む前に、活性分子の迅速なスクリーニングのために近づきます。これらのモデルは、動物(ラット、マウス、ブタおよびウシ)またはヒト細胞株10,11,12から得られたBMECsまたは共培養BMECsとアストロサイト(まれ周皮細胞)の単一内皮層、から構成されています。経内皮電気抵抗(TEER)と定義された分子量を有するトレーサーの見かけの透過性(P アプリ )は、in vitroモデルの品質を決定するために使用される2つの重要なパラメータを表します。ここでは、フルオレセインisothiを内包フェリチンナノケージのトランスBBB透過を研究するためにラットBMECs(RBMECs)およびラット皮質アストロサイト(RCAS)の共培養に基づいて、BBB のin vitroモデルの雇用を記述するocyanate(FITC)。

Protocol

1. BBBモデルの確立注意:BBBモデルを確立するために我々は、市販の一次RBMECsとRCASを使用して示唆しています。すべてのステップは、無菌試薬および消耗品を用いて行わ層流フード内で処理する必要があります。 細胞培養ポリ-L-リジンは100μg/ mlで(RTで1時間)、またはフィブロネクチンを50μg/ mlの(37℃で1時間)で被覆細胞培養フラスコは、それぞれ、RCASまたはRBMECsの付?…

Representative Results

インサートのBBBモデル、細胞の付着および増殖の確立中にPET膜の透明性のために光学顕微鏡のおかげを使用してモニターすることができます。 35,000細胞/ cm 2の密度で播種RCASは、RT( 図2A)でのインキュベーションの4時間後に、インサートの底側に効率的に付着し、3日後に膜表面を覆うように成長し、紡錘状の形態をとります( 図2B)。</st…

Discussion

ここに記載のin vitroの方法は、ナノ粒子とナノ製剤の際に蛍光分子のトランスBBBの配信を研究するための有用な検証アプローチを表します。ここでは、BBBを通過カーゴ分子の転座を研究するための良好な候補を表しFNNを、使用しています。それは、特にBMECsの管腔膜上に発現し、受容体媒介インターナリゼーション経路を使用してナノ粒子の取り込みを媒介するTfR1受容体によって認識?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

The authors acknowledge Assessorato alla Sanità, Regione Lombardia and Sacco Hospital (NanoMeDia Project) for research funding.

Materials

Rat Brain Microvascular Endothelial Cells  Innoprot P10308 isolated from Sprague Dawley rat brain tissue, cryopreserved at passage one and delivered frozen
Cortical Astrocytes  Innoprot P10202 isolated from 2 days rat brain tissue, cryopreserved at passage one and delivered frozen.
Endothelial Cell Medium kit Innoprot P60104 ECM (500 ml) and fetal bovin serum (25 ml), endothelial cell growth supplement (5 ml) and penicillin/streptomycin (5 ml). Warm in 37 °C water bath before use and protect from light
Trypsin-EDTA without Phenol Red EuroClone ECM0920D Warm in 37 °C water bath before use
Fluorescein isothiocyanate-dextran 40000 Sigma FD40S protect from light
paraformaldehyde  Sigma 158127 diluition in chemical hood
Dulbecco's phosphate buffer saline w/o Ca and Mg EuroClone ECB4004L
Triton X-100 Sigma T8787
bovine serum albumin  Sigma A7906
goat serum  EuroClone ECS0200D
mouse monoclonal anti-Von Willebrand Factor Dako M0616
AlexaFluor 546-conjugated antibody against mouse IgGs ThermoFischer Scientific A-11003 protect from light
DAPI (4’ ,6-diamidino-2-phenylindole)  ThermoFischer Scientific D1306 protect from light
ProLong Gold Antifade Mountant ThermoFischer Scientific P36934
Poly-L-lysine Hydrobromide Sigma P1274 the same solution can be used several times
fibronectin from bovine plasma  Sigma F1141 the same solution can be used several times
Polyethylene terephthalate (PET) inserts Falcon F3090 Transparent Polyethylene terephthalate (PET) membranes; surface area: 4.2 cm2; pore size 0.4 µm/surface area
T75 Primo TC flask EuroClone ET7076
T175 Primo TC flask EuroClone ET7181
EVOM2 Epithelial Tissue Volt/Ohmmeter    World Precision Instruments Germany EVOM2
Endohm- 24SNAP cup World Precision Instruments Germany ENDOHM-24SNAP
Light/fluorescence microscope with camera Leica Microsystems DM IL LED Fluo/ ICC50 W Camera Module  inverted microscope for live cells with camera 
Confocal Microscope Leica Microsystems TCS SPE

References

  1. Banks, W. A. Characteristics of compounds that cross the blood-brain barrier. BMC Neurol. 9 (1), 3 (2009).
  2. Löscher, W., Potschka, H. Drug resistance in brain disease and the role of efflux transporters. Nat Rev Neurosci. 6, 591-602 (2005).
  3. Xu, G., Mahajan, S., Roy, I., Yong, K. -. T. Theranostic quantum dots for crossing blood-brain barrier in vitro and providing therapy of HIV-associated encephalopathy. Front Pharmacol. 15 (4), 140 (2013).
  4. Masserini, M. Nanoparticles for Brain Drug Delivery. ISRN Biochem. , (2013).
  5. Sagar, V., Pilakka-Kanthikeel, S., Pottathil, R., Saxena, S. K., Nair, M. Towards nanomedicines for neuroAIDS. Rev. Med. Virol. 24 (2), 103-124 (2014).
  6. Kreuter, J. Drug delivery to the central nervous system by polymeric nanoparticles: What do we know. Adv. Drug Deliver. Rev. 71, 2-14 (2014).
  7. Arosio, P., Ingrassia, R., Cavadini, P. Ferritins: a family of molecules for iron storage, antioxidation and more. Biochim. Biophys. Acta. 1790 (7), 589-599 (2009).
  8. Jääskeläinen, A., Soukka, T., Lamminmäki, U., Korpimäki, T., Virta, M. Development of a denaturation/renaturation-based production process for ferritin nanoparticles. Biotechnol. Bioeng. 102 (4), 1012-1024 (2009).
  9. Jefferies, W. A., Brandon, M. R., Hunt, S. V., Williams, A. F., Gatter, K. C., Mason, D. Y. Transferrin receptor on endothelium of brain capillaries. Nature. 312, 162-163 (1984).
  10. Deli, M. A., Abraham, C. S., Kataoka, Y., Niwa, M. Permeability studies on in vitro blood-brain barrier models: physiology, pathology, and pharmacology. Cell. Mol. Neurobiol. 25 (1), 59-127 (2005).
  11. Wilhelm, I., Fazakas, C., Krizbai, I. A. In vitro models of the blood-brain barrier. Acta Neurobiol. Exp. (Wars). 71, 113-128 (2011).
  12. Wilhelm, I., Krizbai, I. A. In vitro models of the blood-brain barrier for the study of drug delivery to the brain. Mol Pharm. 11 (7), 1949-1963 (2014).
  13. Bellini, M., et al. Protein nanocages for self-triggered nuclear delivery of DNA-targeted chemotherapeutics in Cancer Cells. J. Control. Release. 196, 184-196 (2014).
  14. Fiandra, L., et al. Nanoformulation of antiretroviral drugs enhances their penetration across the blood brain barrier in mice. Nanomedicine. 11 (6), 1387-1397 (2015).
  15. Molino, Y., Jabès, F., Lacassagne, E., Gaudin, N., Khrestchatisky, M. Setting-up an in vitro model of rat blood-brain barrier (BBB): a focus on BBB impermeability and receptor-mediated transport. J. Vis. Exp. , e51278 (2014).
  16. Perrière, N., et al. A functional in vitro model of rat blood-brain barrier for molecular analysis of efflux transporters. Brain Res. 1150, 1-13 (2007).

Play Video

Citer Cet Article
Fiandra, L., Mazzucchelli, S., Truffi, M., Bellini, M., Sorrentino, L., Corsi, F. In Vitro Permeation of FITC-loaded Ferritins Across a Rat Blood-brain Barrier: a Model to Study the Delivery of Nanoformulated Molecules. J. Vis. Exp. (114), e54279, doi:10.3791/54279 (2016).

View Video