Summary

膜片钳记录的成年大鼠完整背根神经节

Published: September 29, 2016
doi:

Summary

This manuscript describes how to prepare intact dorsal root ganglia for patch clamp recordings. This preparation maintains the microenvironment for neurons and satellite glial cells, thus avoiding the phenotypic and functional changes seen using dissociated DRG neurons.

Abstract

从背根神经节膜片钳研究(病种付费)神经元增加了我们周围神经系统的理解。目前,大部分的录音是在解离的DRG神经元,这是大多数实验室标准制剂进行。神经元特性,然而,可以通过从在获取解离的神经元使用的酶消化所得轴索损伤改变。另外,解离的神经元制剂不能完全代表DRG的微环境,因为与环绕初级感觉神经元卫星细胞接触的损失是这种方法的不可避免的结果。为了克服在使用传统的分离DRG神经元膜片钳记录,本报告中的局限性,我们描述编写完整的按病种付费和个人的初级感觉神经元在体外进行膜片钳记录的方法。这种方法可以完整的DRG的快速和简单的准备, 模仿体内通过保持与周围卫星细胞和基底膜相关的背根神经节的条件。此外,该方法从操作避免性轴索损伤和酶消化这种游离病种付费时。此体外制剂可以附加地用于研究初级感觉神经元和卫星细胞之间的相互作用。

Introduction

感觉是一个有机体的生存和健康的基石。刺激的传输依赖于起始于从初级感觉神经元轴突的周神经末梢的感觉通路。初级感觉神经元,与三叉神经的脑核外,位于三叉神经节和背根神经节(背根节)。他们担任的感官信息1看门人。在perikarial膜,正如在中央和外围终端,DRG神经元表达的受体和离子通道,例如谷氨酸受体,TNFα的受体,瞬时受体电位阳离子通道亚家族V部件1(TRPV1),钠通道 2 -7。在perikarial膜的膜片钳记录可以理解许多这些受体和渠道遍布神经细胞的功能变化。

膜片钳记录技术是STU一个强大的工具垂死的通道或受体和大量的研究活动已被应用在背根神经节8-10这项技术进行的。在大多数研究中,DRG通过切割背侧支根和脊神经靠近神经节除去。切碎后,将神经节然后被放置在导致DRG神经元,然后可记录之前立即或培养记录数天的分解酶。不幸的是,DRG神经元的解离涉及接近胞体的必要干切断。一旦分离和金黄地鼠,DRG神经元发生在膜兴奋11,12的表型变化以及变化。通常围绕它们单个神经元的胞体和卫星细胞之间的接触的损失是可能有助于这些变化13。神经元和卫星细胞之间的串扰是生理条件缺一不可,并在适应patholog的iCal条件如那些导致顽固性疼痛14,15。这将是具有挑战性的,研究使用解离的DRG制备神经元和卫星细胞之间的相互作用。

完好的DRG,另一方面,提供接近体内条件。在过去的几年里,我们的实验室,以及一些其他基团,一直使用从成年大鼠完整的DRG以调查在慢性疼痛3-5,11,15-17相关联的不同条件的初级感觉神经元的变化。虽然在这些研究中所使用的技术是有些建立,步骤一步描述尚未公布。在本手稿中,我们描述了一个方便,快捷的方式准备完整的按病种付费和他们的膜片钳记录使用。

Protocol

伦理声明:维护和使用实验动物的所有程序符合UCSF委员会对动物研究的法规,按照美国国立卫生研究院的规定动物使用和保养(出版85的指导方针进行了 – 23日,1996年修订)。加州大学旧金山分校的机构动物护理和使用委员会批准在这项研究中所使用的协议。 1.仪器,解决方案和准备餐具准备人工脑脊液(学联)。 制备500毫升10×低阳离子溶液,和500毫升的10倍…

Representative Results

图1显示了制备完整的DRG补丁记录的过程。 图1A示出椎板切除。 图1b后神经节的曝光和位置表示的L3,L4和L5的DRG以除去脊髓后附的神经根。然后L4和5的DRG仔细解剖并从椎骨释放。接着,将神经外膜,围绕DRG的透明膜被去除(黄色箭头, 图1D)。到神经外膜分离的最佳位置是通过那里的背侧和腹侧根部加入在DRG的部位,由<st…

Discussion

我们报告准备膜片钳研究整个病种付费的方法。有用于制备理想的检体的几个关键要素。首先,与附后根解剖的DRG是重要的。在此之后,神经外膜需要避免对神经元损害,同时要小心除去。最后,以暴露的神经元和其周围卫星细胞,有必要以消化剩余的结缔组织。从这里所描述的方法制备的成年大鼠完整的DRG将保持良好的生存力为6至8小时,并且可以在该期间稳定地记录。它们可用于诊断相关组?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

The authors would like to acknowledge the Painless Research Foundation for support of the work. This work was also supported by the NIH grants R01 NS080921-01 and R21 NS079897-01A1.

Materials

Pentobarbital sodium vortech Pharmaceuticals
syringe BD 309659 1 ml, 5 ml.
scalpel BD size: 15
Mayo straight scissor Fine Science Tools 14010-15
Mayo curved scissor Fine Science Tools 14011-15
Rongeur Fine Science Tools 16021-14
Adson toothed forceps Fine Science Tools 11027-12
Iris Scissor Fine Science Tools 14084-08
Noyes spring scissor Fine Science Tools 15124-12
Bone scissors Fine Science Tools 16044-10 Special for cutting the bones. 
Forceps: Dumont, Dumoxel Biologie #5 Fine Science Tools 11252-30 These have the fine tips that do not need sharpening when first purchased.
periosteal elevator Sklar 97-0530
Dissection microscope WILD
Transfer pipette Fisher brand 13-711-5AM
Petri dish (10 cm) Pyrex Glass petri dish can avoid damaging the tips of fine forceps
Collagenase (Liberase TM) Roche 05-401-119-001 dissolve at the concentration of 13 u/ml, aliquot into glass pipette. Avoid repeated freeze and thaw.
filter Thermo scientific 7232520 Filter the internal solutions for patch clamp recording to avoid clog.
Glass pipette Sutter BF150-110-7.5
Anchor Havard apparatus 64-0250 stabilize the DRG to avoid drift.
Peristaltic pump WPI
Pipette puller Sutter P97
Amplifier Molecular devices Axopatch 200B
Digitizer Molecular devices 1440D
Microscope NIKON FN600
Micro-manipulator Sutter MPC200
microinjection dispense system General Valve Picrospitzer II fast drug application system
Carbogen (95% O2, 5% CO2) Local Medical Gas supplier

References

  1. Basbaum, A. I., Bautista, D. M., Scherrer, G., Julius, D. Cellular and molecular mechanisms of pain. Cell. 139, 267-284 (2009).
  2. Caterina, M. J., et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 389, 816-824 (1997).
  3. Gong, K., Bhargava, A., Jasmin, L. GluN2B N-methyl-D-aspartate receptor and excitatory amino acid transporter 3 are upregulated in primary sensory neurons after 7 days of morphine administration in rats: implication for opiate-induced hyperalgesia. Pain. 157, 147-158 (2016).
  4. Gong, K., Kung, L. H., Magni, G., Bhargava, A., Jasmin, L. Increased response to glutamate in small diameter dorsal root ganglion neurons after sciatic nerve injury. PloS one. 9, 95491 (2014).
  5. Gong, K., Zou, X., Fuchs, P. N., Lin, Q. Minocycline inhibits neurogenic inflammation by blocking the effects of tumor necrosis factor-alpha. Clin Exp Pharmacol Physiol. , (2015).
  6. Ohtori, S., Takahashi, K., Moriya, H., Myers, R. R. TNF-alpha and TNF-alpha receptor type 1 upregulation in glia and neurons after peripheral nerve injury: studies in murine DRG and spinal cord. Spine. 29, 1082-1088 (2004).
  7. Waxman, S. G., Cummins, T. R., Dib-Hajj, S., Fjell, J., Black, J. A. Sodium channels, excitability of primary sensory neurons, and the molecular basis of pain. Muscle nerve. 22, 1177-1187 (1999).
  8. Zhang, J. M., Song, X. J., LaMotte, R. H. Enhanced excitability of sensory neurons in rats with cutaneous hyperalgesia produced by chronic compression of the dorsal root ganglion. J Neurophysiol. 82, 3359-3366 (1999).
  9. Dib-Hajj, S. D., et al. Plasticity of sodium channel expression in DRG neurons in the chronic constriction injury model of neuropathic pain. Pain. 83, 591-600 (1999).
  10. Cummins, T. R., et al. A novel persistent tetrodotoxin-resistant sodium current in SNS-null and wild-type small primary sensory neurons. J Neurosci. 19, RC43 (1999).
  11. Zheng, J. H., Walters, E. T., Song, X. J. Dissociation of dorsal root ganglion neurons induces hyperexcitability that is maintained by increased responsiveness to cAMP and cGMP. J Neurophysiol. 97, 15-25 (2007).
  12. Schoenen, J., Delree, P., Leprince, P., Moonen, G. Neurotransmitter phenotype plasticity in cultured dissociated adult rat dorsal root ganglia: an immunocytochemical study. J Neurosci Res. 22, 473-487 (1989).
  13. Hanani, M. Satellite glial cells: more than just ‘rings around the neuron’. Neuron Glia Biol. 6, 1-2 (2010).
  14. Takeda, M., Nasu, M., Kanazawa, T., Shimazu, Y. Activation of GABA(B) receptors potentiates inward rectifying potassium currents in satellite glial cells from rat trigeminal ganglia: in vivo patch-clamp analysis. Neurosciences. 288, 51-58 (2015).
  15. Zhang, H., et al. Altered functional properties of satellite glial cells in compressed spinal ganglia. Glia. 57, 1588-1599 (2009).
  16. Fan, N., Donnelly, D. F., LaMotte, R. H. Chronic compression of mouse dorsal root ganglion alters voltage-gated sodium and potassium currents in medium-sized dorsal root ganglion neurons. J Neurophysiol. 106, 3067-3072 (2011).
  17. Fan, N., Sikand, P., Donnelly, D. F., Ma, C., Lamotte, R. H. Increased Na+ and K+ currents in small mouse dorsal root ganglion neurons after ganglion compression. J Neurophysiol. 106, 211-218 (2011).
  18. Sherman-Gold, R. . The Axon Guide. , (2008).
  19. Cummins, T. R., Rush, A. M., Estacion, M., Dib-Hajj, S. D., Waxman, S. G. Voltage-clamp and current-clamp recordings from mammalian DRG neurons. Nat Protoc. 4, 1103-1112 (2009).
  20. Zhang, J. M., Donnelly, D. F., LaMotte, R. H. Patch clamp recording from the intact dorsal root ganglion. J Neurosci Methods. 79, 97-103 (1998).
  21. Benn, S. C., Costigan, M., Tate, S., Fitzgerald, M., Woolf, C. J. Developmental expression of the TTX-resistant voltage-gated sodium channels Nav1.8 (SNS) and Nav1.9 (SNS2) in primary sensory neurons. J Neurosci. 21, 6077-6085 (2001).
  22. Funakoshi, K., et al. Differential development of TRPV1-expressing sensory nerves in peripheral organs. Cell Tissue Res. 323, 27-41 (2006).
  23. Hayar, A., Gu, C., Al-Chaer, E. D. An improved method for patch clamp recording and calcium imaging of neurons in the intact dorsal root ganglion in rats. J Neurosci Methods. 173, 74-82 (2008).
  24. Yagi, J., Sumino, R. Inhibition of a hyperpolarization-activated current by clonidine in rat dorsal root ganglion neurons. J Neurophysiol. 80, 1094-1104 (1998).
  25. Ma, C., Donnelly, D. F., LaMotte, R. H. In vivo visualization and functional characterization of primary somatic neurons. J Neurosci Methods. 191, 60-65 (2010).
  26. Vit, J. P., Jasmin, L., Bhargava, A., Ohara, P. T. Satellite glial cells in the trigeminal ganglion as a determinant of orofacial neuropathic pain. Neuron Glia Biol. 2, 247-257 (2006).

Play Video

Citer Cet Article
Gong, K., Ohara, P. T., Jasmin, L. Patch Clamp Recordings on Intact Dorsal Root Ganglia from Adult Rats. J. Vis. Exp. (115), e54287, doi:10.3791/54287 (2016).

View Video