Summary

对大脑中动脉闭塞再灌注损伤诱发中风小鼠的手术方法

Published: October 20, 2016
doi:

Summary

为了了解中风的病理生理学,它使用可靠的模型是很重要的。本文将描述在小鼠中的最常用的中风模型中的一个,称为大脑中动脉闭塞(MCAO)模型(也称为腔内灯丝或缝合模型)再灌注。

Abstract

中风是全世界死亡的首要原因,仍然是长期的残疾成年人的主要原因之一。约87%的中风是起源于缺血发生在大脑中动脉(MCA)的领土。目前唯一食品和药物管理局(FDA)批准的药物对这种破坏性疾病的治疗是组织纤溶酶原激活物(tPA)。然而,tPA的有管理一个小的治疗窗(3 – 6小时),且仅在究竟是谁收到患者的4%有效。目前的研究重点是了解中风的病理生理机制,以便找到潜在的治疗靶点。因此,可靠的模型是至关重要的,而MCA闭塞(MCAO)模型(也称为腔内丝或缝线模型)被认为是缺血性中风的最临床相关的手术模式,是相当非侵入性和容易复制。典型地,MCAO模型一起使用啮齿动物,尤其是由于小鼠所有可用的该物种的遗传变异。这里,我们描述(和存在于该视频)如何成功地执行小鼠MCAO模型(再灌注),以产生可靠和可重复的数据。

Introduction

中风是死亡的第五大原因遍及世界各地,死于该病一人每隔4分钟。超过80万美国人患有每年中风,这不仅是毁灭性的病人,也为他们的家庭。中风是成人残疾的主要原因,年支出估计为在$ 36.5十亿1的顺序,尽管很少有治疗方法是可用的。

组织纤溶酶原激活物(tPA)是唯一食品和药物管理局(FDA)的许可药物缺血性中风。然而,如果来自中风发作给予患者3-6小时内,并且在这些情况下,有利于仅4%的患者2是唯一有效的。因此,当务之急是中风的重现性好,临床相关动物模型被用于在潜在的治疗策略和治疗这种疾病的发展中提供帮助。要注意, 在体外是很重要</青霉>模型,而在模拟的脑功能障碍的某些方面是有用的,不能够扼要发生在脑和外周中风后的复杂的生理的相互作用。因此, 在体内模型是必不可少的。

中风的最常见的类型是起源于缺血,约占总笔画的87%。其它笔划是脑内出血(9%)和蛛网膜下腔出血(4%),和最经常由栓子到大脑中动脉(MCA)引起的。这是由于在MCA的根部突出曲线,这导致进入大脑层血流成为打乱。在MCA来源于颈内动脉(ICA)和路线沿着横向沟,在那里它的分支和项目基底节和额叶,顶叶和颞叶,包括主运动和感觉皮层的侧表面。 Willis环是由大脑后动脉被创建连接到脑动脉和后交通动脉。

MCAO的腔内长丝或缝合模型是最广泛使用于中风研究之一。但是,有几个不同的变化,以这种模式的,而这些都是根据微丝是否被插入到颈外动脉(ECA,称为龙格法)3,或者它是否被插入的ICA(称为小泉法)4。在小泉方法,在手术侧的总颈动脉(CCA)必须永久如果灯丝被去除以防止在CCA切口出血并列,而在龙格的方法是,必须永久地并列5 ECA 。在这里,因为我们认为这是一个远远优于和缺血性中风更临床相关的手术模式将要使用的方法龙格。此外,使用的硅尖单丝的,特别是与龙格的方法,产生了非常重现的MCAO相对于火焰钝化单丝,这往往产生不完全的闭塞和/或蛛网膜下腔出血6。

腔内长丝方法可作为永久或短暂闭塞4,6的模型。执行瞬态模型,灯丝一段局部缺血之后去除( 例如,30分钟,60分钟,或2小时),再灌注被允许发生。该模型中,在一定程度上模拟血流后自发或治疗性干预( 例如 ,tPA的给药)以裂解在人类中的血栓栓塞凝块的恢复。为永久模型,灯丝在适当位置简单地放置一段时间( 例如 ,24小时),因此,不发生再灌注。腔内长丝方法的另一个优点是,开颅并不需要执行,从而可以原封不动颅骨和避免在颅内压力和温度的任何变化的事实。

<p c姑娘="“jove_content”">在这个视频中,我们展示了如何执行隆加腔内长丝的方法诱导缺血再灌注。我们还显示了如何执行18点神经学评分,并确定使用2,3,5- triphenyltetrazalium氯化物(TTC)染色的梗死体积。

Protocol

在视频报道该协议与实验得到LSUHSC-S机构动物护理和使用委员会批准并符合美国国立卫生研究院的指导方针。 注:雄性C57BL / 6小鼠重25 – 47克该研究中使用。小鼠保持与自由饮水标准州城颗粒饲料,在单独通风笼12小时光/暗周期下。该过程将使用无菌技术( 例如 ,无菌手套,无菌仪器)在无菌条件下进行。 1.术前准备工作诱导用氯胺酮(150毫克/千克)和赛拉嗪(10毫克/…

Representative Results

小鼠进行30分钟的MCAO引起的脑缺血( 图1),随后一个周期再灌注的(24小时和1周在这里提出,但再灌注的长度可以变化)。缺血期间的死亡率是最小的(约2%)。交的缺血,死亡率(第24小时之内)为26%左右。 激光多普勒血流仪被用来确认在之前和MCAO /再灌注后MCA区血流灌注。 图4清楚地表明,当?…

Discussion

由于它的概念20年前,在MCAO模型对于涉及丝插入人体行程已在研究一个巨大的数字使用。这主要是由于它模拟什么在行程( 即,缺血性中风)的最常见的形式的临床发生的事实。纹状体是缺血比大脑皮层更敏感,并且同样地,缺血时间长度将翻译成两个纹状体和背外侧皮层是否会受到影响,或者仅仅纹状体。既梗塞和再灌注时间可相应地改变,并且这提供了研究者能够研究短暂性脑缺血发…

Divulgations

The authors have nothing to disclose.

Acknowledgements

This work was funded by the National Institute of Health, the National Heart Lung and Blood Institute (NIH and NHLBI; HL125572-01A1) and the LSUHSC-S start up fund to F.N.E. Gavins.

Materials

Male C57BL/6 mice Jackson Laboratory, Bar Harbor, ME #000664
Ketamine Hydrochloride Morris & Dickson, Shreveport, LA 67457-108-10
Xylazine Akorn, Inc, Lake Forest, IL NADA# 139-236
DC temperature control system FHC, Bowdoin, ME 40-90-8D
Mini rectal thermistor probe FHC, Bowdoin, ME 40-80-5D-02
Heating pad FHC, Bowdoin, ME 40-90-2-06
Clippers Amazon, Bellevue, WA #64800
70% ethanol Worldwide Medical Products, Bristol, PA #51011023
Dissecting microscope Olympus, Center Valley, PA SZ40
Iris scissors (straight) Fine Science Tools, Foster City, CA 11251-20
Dumont forceps (45° bent tip) Fine Science Tools, Foster City, CA 11297-00
Micro vessel clip Fine Science Tools, Foster City, CA 18055-05
Micro dissecting spring scissors (straight) Fine Science Tools, Foster City, CA 14088-10
Retractors (blunt) Fine Science Tools, Foster City, CA 18200-11 (Helen used 17022-13)
Cotton tipped applicators Fisher Scientific, Waltham, MA 23-400-100
Gauze sponges Covidien, Mansfield, MA #9023
6-0 silk braided surgical suture Roboz, Gaithersburg, MD SUT-1073-11
0.9% sodium chloride Morris & Dickson, Lake Forest, IL 0409-4888-20
6-0 medium MCAO suture (silicon rubber coated monofilament) Doccol Corporation, Sharon, MA 6023PKRe
Sofsilk 6-0 silicone coated braided silk Covidien, Mansfield, MA SUT-14-1
Carprofen Pfizer, New York, NY NADA# 141-199
Puralube Dechra, Norwich, UK NDC 17033-211-38
Physitemp temperature controller Harvard Apparatus, Holliston, MA TCAT-2AC
Heat lamp Harvard Apparatus, Holliston, MA HL-1
Laser doppler probe AD Instruments, Colorado Springs, CO MSP100XP
24-well plates Fisher Scientific, Waltham, MA #353226
Phosphate buffered saline (PBS) Life Technologies, Carlsbad, CA 20012-050
Single edge razor blades Fisher Scientific, Waltham, MA 12-640
2,3,5-triphenyltetrazalium chloride (TTC) Sigma Aldrich, St. Louis, MO T8877-50G
Mouse brain matrix slicer Braintree Scientific, Braintree, MA BS-A 5000C
Water bath VWR, Radnor, PA #182
10% formalin Sigma Aldrich, St. Louis, MO HT501128-4L
Image J analysis software NIH, Bethesda, MD free download
Retractor Medical Device Purchase, Newcastle, CA MP-740

References

  1. Go, A. S., et al. Heart disease and stroke statistics-2014 update: a report from the American Heart Association. Circulation. 129 (3), e28-e292 (2014).
  2. Marks, M. P., et al. Patients with acute stroke trated with intravenous tPS 3-6 hours after stroke onset: correlations between MR angiography findings and perfusion- and diffusion-weighted imaging in the DEFUSE study. Radiology. 249 (2), 614-623 (2008).
  3. Longa, E. Z., Weinstein, P. R., Carlson, S., Cummins, R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 20 (1), 84-91 (1989).
  4. Koizumi, J., Yoshida, Y., Nakazawa, T., Ooneda, G. Experimental studies of ischemic brain edema, I: a new experimnetal model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area. Jpn J Stroke. (8), 1-8 (1986).
  5. Smith, H. K., Russell, J. M., Granger, D. N., Gavins, F. N. E. Critical differences between two classical surgical approaches for middle cerebral artery occlusion-induced stroke in mice. J Neurosci Meth. 249, 99-105 (2015).
  6. Gavins, F. N., Dalli, J., Flower, R. J., Granger, D. N., Perretti, M. Activation of the annexin 1 counter-regulatory circuit affords protection in the mouse brain microcirculation. FASEB J. 21 (8), 1751-1758 (2007).
  7. Chen, J., et al. Atorvastain induction of VEGF and BDNF promotes brain plasticity after stroke in mice. J Cereb Blood Flow Metab. 25 (2), 281-290 (2005).
  8. Li, Y., et al. Intrastriatal transplantation of bone marrow nonhematopoietic cells improves functional recovery after stroke in adult mice. J Cereb Blood Flow Metab. 20 (9), 1311-1319 (2000).
  9. Liesz, A., et al. The spectrum of systemic immune alterations after murine focal ischemia; the immunodepression versus immunomodulation. Stroke. 40 (8), 2849-2858 (2009).
  10. Beckmann, N. High resolution magnetic resonance angiography non-invasively reveals mouse strain differences in the cerebrovascular anatomy in vivo. Magn Reson Med. 44 (2), 252-258 (2000).
  11. Barone, F. C., Knudsen, D. J., Nelson, A. H., Feuerstein, G. Z., Willette, R. N. Mouse strain differences in susceptibility to cerebral ischemia are related to cerebral vascular anatomy. J Cereb Blood Flow Metab. 13 (4), 683-692 (1993).
  12. Burk, J., Burggraf, D., Vosko, M., Dichgans, M., Hamann, G. F. Protection of cerebral microvasculature after moderate hypothermia following experimental focal cerebral ischemia in mice. Brain Res. (1226), 248-255 (2008).
  13. Noor, R., Wang, C. X., Shuaib, A. Effects of hyperthemia on infarct volume in focal embolic model of cerebral ischemia in rats. Neurosci Lett. 349 (2), 130-132 (2003).
  14. Shin, H. K., et al. Mild induced hypertension improves blood flow and oxygen metabolism in transient focal cerebral ischemia. Stroke. 39 (5), 1548-1555 (2008).
  15. Richter, S. H., Garner, J. P., Würbel, H. Environmental standardization: cure or cause of poor reproducibility in animal experiments?. Nat Methods. 6 (4), 257-261 (2009).
  16. Holloway, P. M., et al. Both MC1 and MC3 receptors provide protection from cerebral ischemia-reperfusion-induced neutrophil recruitment. Arterioscler Thromb Vasc Biol. 35, (2015).
  17. Vandeputte, C., et al. Characterization of the inflammatory response in a photothrombotic stroke model by MRI: implications for stem cell transplantation. Mol Imaging Biol. 13 (4), 663-671 (2010).
  18. Iwae, Y., et al. Glial cell-mediated deterioration and repair of the nervous system after traumatic brain injury in a rat model as assessed by positron emission tomography. J Neurotrauma. 27 (8), 1463-1475 (2010).
  19. Morris, R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods. 11 (1), 47-60 (1984).
  20. Mouzon, B., et al. Repetitive mild traumatic brain injury in a mouse model produces learning and memory deficits accompanied by histological changes. J Neurotrauma. 29 (18), 2761-2773 (2012).
  21. Fleming, S., et al. Early and progressive sensorimotor anomalies in mice overexpressing wild-type human α-synuclein. J Neurosci. 24 (42), 9434-9440 (2004).
  22. Sedelis, M., Schwarting, R. K. W., Huston, J. P. Behavioral phenotyping of the MPTP mouse model of Parkinson’s disease. Behav Brain Res. 125 (1-2), 109-125 (2001).
  23. Toon, L., Silva, M., D’Hooge, R., Aerts, J. M., Berckmans, D. Automated gait analysis in the open-field test for laboratory mice. Behav Res Methods. 41 (1), 148-153 (2009).
  24. Lubjuhn, J., et al. Functional testing in a mouse stroke model induced by occlusion of the distal middle cerebral artery. J Neurosci Methods. 184 (1), 95-103 (2009).
  25. Bouët, V., Freret, T., Toutain, J., Divoux, D., Boulouard, M., Schumann-Bard, P. Sensorimotor and cognitive deficits after transient middle cerebral artery occlusion in the mouse. Exp Neurol. 203 (2), 555-567 (2007).
  26. Freret, T., et al. Behavioral deficits after distal focal cerebral ischemia in mice: usefulness of adhesive removal test. Behav Neurosci. 123 (1), 224-230 (2009).
  27. Zhan, Y., et al. Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nature Neurosci. 17, 400-406 (2013).
  28. Balkaya, M., Kröber, J. M., Rex, A., Endres, M. Assessing post-stroke behavior in mouse models of focal ischemia. J Cereb Blood Flow. 33, 330-338 (2012).
  29. Wiessner, C., et al. Anti-nogo-a antibody infusion 24 hours after experimental stroke imporved behavioral outcome and corticospinal plasticity in normotensive and spontaneously hypertensive rats. J Cereb Blood Flow Metab. 23, 154-165 (2003).
  30. Schaar, K. L., Brenneman, M. M., Savitz, S. I. Functional assessments in the rodent stroke model. Exp Transl Stroke Med. 2 (13), (2010).
check_url/fr/54302?article_type=t

Play Video

Citer Cet Article
Vital, S. A., Gavins, F. N. E. Surgical Approach for Middle Cerebral Artery Occlusion and Reperfusion Induced Stroke in Mice. J. Vis. Exp. (116), e54302, doi:10.3791/54302 (2016).

View Video