Summary

måle<em> In Vitro</em> ATPase aktivitet for Enzymatisk Karakterisering

Published: August 23, 2016
doi:

Summary

We describe a basic protocol for quantitating in vitro ATPase activity. This protocol can be optimized based on the level of activity and requirements for a given purified ATPase.

Abstract

Adenosin trifosfat-hydrolyserende enzymer, eller ATPaser, spille en avgjørende rolle i et mangfoldig utvalg av cellulære funksjoner. Disse dynamiske proteiner kan generere energi til mekanisk arbeid, slik som protein menneskehandel og degradering, oppløst stoff transport, og cellulære bevegelser. Protokollen er beskrevet her er en grunnleggende undersøkelse for å måle in vitro-aktiviteten av rensede ATPaser for funksjonell karakterisering. Proteiner hydrolyserer ATP i en reaksjon som fører til uorganisk fosfat frigjøring, og mengden av fosfat frigjort blir deretter kvantifisert ved hjelp av en kolorimetrisk analyse. Denne svært tilpasningsdyktig protokollen kan tilpasses for å måle ATPase-aktivitet i kinetiske eller endepunkt analyser. En representant protokollen er gitt her er basert på aktiviteten og krav EPSE, AAA + ATPase involvert i Type II Utskillelse i bakterien Vibrio cholerae. Mengden av renset protein som er nødvendig for å måle aktivitet, lengden av analysen og timingen og antallet sampling intervaller, buffer og salt sammensetning, temperatur, co-faktorer, sentralstimulerende midler (hvis noen), etc. kan variere fra det som er beskrevet her, og dermed noen optimalisering kan være nødvendig. Denne protokollen gir en grunnleggende rammeverk for å karakterisere ATPaser og kan utføres raskt og enkelt kan justeres etter behov.

Introduction

ATPases are integral enzymes in many processes across all kingdoms of life. ATPases act as molecular motors that use the energy of ATP hydrolysis to power such diverse reactions as protein trafficking, unfolding, and assembly; replication and transcription; cellular metabolism; muscle movement; cell motility; and ion pumping1-3. Some ATPases are transmembrane proteins involved in transporting solutes across membranes, others are cytoplasmic and may be associated with a biological membrane such as the plasma membrane or those of organelles.

AAA+ ATPases (ATPases associated with various cellular activities) make up a large group of ATPases that share some sequence and structural conservation. These proteins contain conserved nucleotide binding motifs such as Walker-A and -B boxes and form oligomers (generally hexamers) in their active state1. Large conformational changes in these proteins upon nucleotide binding have been characterized among diverse members of the AAA+ family. EpsE is a AAA+ ATPase and member of the bacterial Type II/IV secretion subfamily of NTPases4-6. EpsE powers Type II Secretion (T2S) in Vibrio cholerae, the causative agent of cholera. The T2S system is responsible for the secretion of a wide variety of proteins, such as the virulence factor cholera toxin that causes profuse watery diarrhea when V. cholerae colonizes the human small intestine7.

Techniques for quantitating in vitro ATPase activity are varied, but commonly measure phosphate release using colorimetric, fluorescent, or radioactive substrates8-11. We describe a basic method for determining in vitro ATPase activity of purified proteins using a colorimetric assay based on a commercially available malachite green-containing substrate that measures liberated inorganic phosphate (Pi). At low pH, malachite green molybdate forms a complex with Pi and the level of complex formation can be measured at 650 nm. This simple and sensitive assay may be used to functionally characterize new ATPases and to evaluate the roles of potential activators or inhibitors, to determine the importance of domains and/or specific residues, or to assess the effect of particular treatments on enzymatic activity.

Protocol

1. Utfør ATP Hydrolyse Reaksjon med Purified Protein Forbered Beholdning av alle nødvendige reagenser for Inkubasjon med Purified Protein. Forbered 5x HEPES / NaCl / glycerol (HNG) buffer inneholdende 100 mM HEPES pH 8,5, 65 mM NaCl, og 5% glycerol (eller annen analysebuffer som det passer). Forbered 100 mM MgCl2 (eller annet metall, hvis ATPase er metall-avhengige) i vann. Forbered fersk 100 mM ATP i 200 mM Tris Base (ikke justere pH videre) med høy renhet ATP. Delm…

Representative Results

Den in vitro aktivitet av T2S-ATPase EPSE kan stimuleres ved copurification av EPSE med det cytoplasmatiske domene av EpsL (EPSE-cytoEpsL) og tilsetning av den sure fosfolipid kardiolipin 12. Det er også mulig å bestemme rollen av bestemte EPSE rester i ATP-hydrolyse ved å sammenligne aktiviteten av villtype (WT) for å variantformer av proteinet ved hjelp av denne analysen. Her er effekten av å erstatte to lysinrester i EPSE sink-bindende domene målt ved å samm…

Discussion

Dette er en generell protokoll for å måle in vitro-ATPase-aktiviteten av rensede proteiner for biokjemisk karakterisering. Denne metoden er lett optimaliseres; for eksempel kan justere mengden av protein, en buffer og saltsammensetninger, temperatur og å variere analysen lengde og intervaller (inkludert øke det totale antall intervaller) bedre aktivitet kvantifisering. Kommersielt tilgjengelige malakittgrønt-baserte reagenser er meget følsomme, og kan detektere små mengder av fritt fosfat (~ 50 pmol i 10…

Divulgations

The authors have nothing to disclose.

Acknowledgements

The authors would like to acknowledge funding from a National Institutes of Health grant RO1AI049294 (to M. S.).

Materials

HEPES buffer Fisher BP310-500
Sodium chloride Fisher BP358-212
Magnesium chloride Fisher BP214-500
Adenosine triphosphate (ATP) Fisher BP41325
96-well plates (clear, flat-bottom) VWR 82050-760
BIOMOL Green Enzo Life Sciences BML-AK111 Preferred phosphate detection reagent. Caution: irritant.
Microplate reader BioTek Synergy or comparable
Prism 5 GraphPad Software

References

  1. Hanson, P. I., Whiteheart, S. W. AAA+ proteins: have engine, will work. Nat Rev Mol Cell Biol. 6 (7), 519-529 (2005).
  2. Baker, T. A., Sauer, R. T. ClpXP, an ATP-powered unfolding and protein-degradation machine. Biochimica et Biophysica Acta. 1823 (1), 15-28 (2012).
  3. Maxson, M. E., Grinstein, S. The vacuolar-type H+-ATPase at a glance – more than a proton pump. J Cell Sci. 127 (23), 4987-4993 (2014).
  4. Planet, P. J., Kachlany, S. C., DeSalle, R., Figurski, D. H. Phylogeny of genes for secretion NTPases: Identification of the widespread tadA subfamily and development of a diagnostic key for gene classification. Proc Natl Acad Sci U S A. 98 (5), 2503-2508 (2001).
  5. Robien, M. A., Krumm, B. E., Sandkvist, M., Hol, W. G. J. Crystal Structure of the Extracellular Protein Secretion NTPase EpsE of Vibrio cholerae. J Mol Biol. 333 (3), 657-674 (2003).
  6. Camberg, J. L., Sandkvist, M. Molecular analysis of the Vibrio cholerae type II secretion ATPase EpsE. J Bacteriol. 187 (1), 249-256 (2005).
  7. Sandkvist, M. Type II secretion and pathogenesis. Infect Immun. 69 (6), 3523-3535 (2001).
  8. Brune, M., Hunter, J. L., Corrie, J. E. T., Webb, M. R. Direct, Real-time measurement of rapid inorganic phosphate release using a novel fluorescent probe and its application to actomyosin subfragment 1 ATPase. Biochimie. 33 (27), 8262-8271 (1994).
  9. Carter, S. G., Karl, D. W. Inorganic phosphate assay with malachite green: An improvement and evaluation. J Biochem Biophys Methods. 7 (1), 7-13 (1982).
  10. Henkel, R. D., VandeBerg, J. L., Walsh, R. A. A microassay for ATPase. Anal Biochem. 169 (2), 312-318 (1988).
  11. Harder, K. W., Owen, P., Wong, L. K. H., Aebersold, R., Clark-Lewis, I., Jirik, F. R. Characterization and kinetic analysis of the intracellular domain of human protein tyrosine phosphatase β (HPTP β) using synthetic phosphopeptides. Biochem J. 298 (2), 395-401 (1994).
  12. Camberg, J. L., Johnson, T. L., Patrick, M., Abendroth, J., Hol, W. G., Sandkvist, M. Synergistic stimulation of EpsE ATP hydrolysis by EpsL and acidic phospholipids. EMBO J. 26 (1), 19-27 (2006).
  13. McLaughlin, S. H., Smith, H. W., Jackson, S. E. Stimulation of the weak ATPase activity of human Hsp90 by a client protein. J Mol Biol. 315 (4), 787-798 (2002).
  14. Shiue, S., Kao, K., Leu, W., Chen, L., Chan, N., Hu, N. XpsE oligomerization triggered by ATP binding, not hydrolysis, leads to its association with XpsL. EMBO J. 25 (7), 1426-1435 (2006).
  15. Ghosh, A., Hartung, S., van der Does, C., Tainer, J. A., Albers, S. V. Archaeal flagellar ATPase motor shows ATP-dependent hexameric assembly and activity stimulation by specific lipid binding. Biochem J. 437 (1), 43-52 (2011).
  16. Savvides, S. N., et al. VirB11 ATPases are dynamic hexameric assemblies: new insights into bacterial type IV secretion. EMBO J. 22 (9), 1969-1980 (2003).
  17. Sanghera, J., Li, R., Yan, J. Comparison of the luminescent ADP-Glo assay to a standard radiometric assay for measurement of protein kinase activity. Assay Drug Dev Techn. 7 (6), 615-622 (2009).
  18. Sherman, D. J., et al. Decoupling catalytic activity from biological function of the ATPase that powers lipopolysaccharide transport. Proc Natl Acad Sci U S A. 111 (13), 4982-4987 (2014).
  19. Zhang, X., et al. Altered cofactor regulation with disease-associated p97/VCP mutations. Proc Natl Acad Sci U S A. 112 (14), E1705-E1714 (2015).
  20. Rowlands, M. G., Newbatt, Y. M., Prodromou, C., Pearl, L. H., Workman, P., Aherne, W. High-throughput screening assay for inhibitors of heat-shock protein 90 ATPase activity. Anal Biochem. 327 (2), 176-183 (2004).
check_url/fr/54305?article_type=t

Play Video

Citer Cet Article
Rule, C. S., Patrick, M., Sandkvist, M. Measuring In Vitro ATPase Activity for Enzymatic Characterization. J. Vis. Exp. (114), e54305, doi:10.3791/54305 (2016).

View Video