Summary

Medindo<em> In Vitro</em> Actividade ATPase para enzimática Caracterização

Published: August 23, 2016
doi:

Summary

We describe a basic protocol for quantitating in vitro ATPase activity. This protocol can be optimized based on the level of activity and requirements for a given purified ATPase.

Abstract

enzimas de hidrólise de trifosfato de adenosina, ou ATPases, desempenham um papel crítico num conjunto diversificado de funções celulares. Estas proteínas dinâmicas podem gerar energia para o trabalho mecânico, tais como o tráfico de proteínas e degradação, transporte de soluto e movimentos celulares. O protocolo aqui descrito é um ensaio de base para a medição da actividade in vitro de ATPases purificadas para a caracterização funcional. Proteínas hidrolisar ATP numa reacção que resulta na libertação de fosfato inorgânico, e a quantidade de fosfato libertado é então quantificada utilizando um ensaio colorimétrico. Este protocolo altamente adaptável pode ser ajustado para medir a actividade de ATPase em ensaios cinéticos ou terminal. Um protocolo representante é fornecido aqui com base na atividade e as exigências de Epse, a AAA + ATPase envolvida no Tipo II Secreção na bactéria Vibrio cholerae. A quantidade de proteína purificada necessária para medir a actividade, duração do ensaio e o calendário e número de saintervalos mpling, tampão e a composição de sal, temperatura, co-factores, estimulantes (se houver), etc., podem variar a partir dos descritos aqui, e, assim, alguma optimização pode ser necessário. Este protocolo fornece uma estrutura básica para ATPases que caracterizam e pode ser realizado de forma rápida e facilmente ajustado conforme necessário.

Introduction

ATPases are integral enzymes in many processes across all kingdoms of life. ATPases act as molecular motors that use the energy of ATP hydrolysis to power such diverse reactions as protein trafficking, unfolding, and assembly; replication and transcription; cellular metabolism; muscle movement; cell motility; and ion pumping1-3. Some ATPases are transmembrane proteins involved in transporting solutes across membranes, others are cytoplasmic and may be associated with a biological membrane such as the plasma membrane or those of organelles.

AAA+ ATPases (ATPases associated with various cellular activities) make up a large group of ATPases that share some sequence and structural conservation. These proteins contain conserved nucleotide binding motifs such as Walker-A and -B boxes and form oligomers (generally hexamers) in their active state1. Large conformational changes in these proteins upon nucleotide binding have been characterized among diverse members of the AAA+ family. EpsE is a AAA+ ATPase and member of the bacterial Type II/IV secretion subfamily of NTPases4-6. EpsE powers Type II Secretion (T2S) in Vibrio cholerae, the causative agent of cholera. The T2S system is responsible for the secretion of a wide variety of proteins, such as the virulence factor cholera toxin that causes profuse watery diarrhea when V. cholerae colonizes the human small intestine7.

Techniques for quantitating in vitro ATPase activity are varied, but commonly measure phosphate release using colorimetric, fluorescent, or radioactive substrates8-11. We describe a basic method for determining in vitro ATPase activity of purified proteins using a colorimetric assay based on a commercially available malachite green-containing substrate that measures liberated inorganic phosphate (Pi). At low pH, malachite green molybdate forms a complex with Pi and the level of complex formation can be measured at 650 nm. This simple and sensitive assay may be used to functionally characterize new ATPases and to evaluate the roles of potential activators or inhibitors, to determine the importance of domains and/or specific residues, or to assess the effect of particular treatments on enzymatic activity.

Protocol

1. Execute Reaction ATP hidrólise com Proteína Purificada Prepare estoques de todos os reagentes necessários para a incubação com proteína purificada. Prepare 5x HEPES / NaCl / glicerol (HNG) contendo tampão HEPES 100 mM, pH 8,5, NaCl 65 mM e glicerol a 5% (ou outro tampão de ensaio conforme o caso). Preparação de 100 mM de MgCl2 (ou outro metal, se é de ATPase dependente de metais) em água. Prepare fresco ATP 100 mM em 200 mM Tris Base (não ajustar o pH ai…

Representative Results

A actividade in vitro da ATPase T2S Epse pode ser estimulada por copurification de Epse com o domínio citoplasmático de EPSL (Epse-cytoEpsL) e adição do ácido 12 cardiolipina fosfolípido. É também possível determinar o papel de determinados resíduos Epse em hidrólise de ATP comparando a actividade do tipo selvagem (WT) para formas variantes da proteína utilizando este ensaio. Aqui, o efeito da substituição de dois resíduos de lisina no domínio de liga?…

Discussion

Este é um protocolo geral para a medição da actividade ATPase in vitro de proteínas purificadas para a caracterização bioquímica. Este método é facilmente optimizado; Por exemplo, ajustando a quantidade de proteína, tampão e composições de sal, temperatura, e variando-se o comprimento de ensaio e intervalos (incluindo o aumento do número total de intervalos) pode melhorar a actividade de quantificação. reagentes verde à base de malaquita comercialmente disponíveis são altamente sens?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

The authors would like to acknowledge funding from a National Institutes of Health grant RO1AI049294 (to M. S.).

Materials

HEPES buffer Fisher BP310-500
Sodium chloride Fisher BP358-212
Magnesium chloride Fisher BP214-500
Adenosine triphosphate (ATP) Fisher BP41325
96-well plates (clear, flat-bottom) VWR 82050-760
BIOMOL Green Enzo Life Sciences BML-AK111 Preferred phosphate detection reagent. Caution: irritant.
Microplate reader BioTek Synergy or comparable
Prism 5 GraphPad Software

References

  1. Hanson, P. I., Whiteheart, S. W. AAA+ proteins: have engine, will work. Nat Rev Mol Cell Biol. 6 (7), 519-529 (2005).
  2. Baker, T. A., Sauer, R. T. ClpXP, an ATP-powered unfolding and protein-degradation machine. Biochimica et Biophysica Acta. 1823 (1), 15-28 (2012).
  3. Maxson, M. E., Grinstein, S. The vacuolar-type H+-ATPase at a glance – more than a proton pump. J Cell Sci. 127 (23), 4987-4993 (2014).
  4. Planet, P. J., Kachlany, S. C., DeSalle, R., Figurski, D. H. Phylogeny of genes for secretion NTPases: Identification of the widespread tadA subfamily and development of a diagnostic key for gene classification. Proc Natl Acad Sci U S A. 98 (5), 2503-2508 (2001).
  5. Robien, M. A., Krumm, B. E., Sandkvist, M., Hol, W. G. J. Crystal Structure of the Extracellular Protein Secretion NTPase EpsE of Vibrio cholerae. J Mol Biol. 333 (3), 657-674 (2003).
  6. Camberg, J. L., Sandkvist, M. Molecular analysis of the Vibrio cholerae type II secretion ATPase EpsE. J Bacteriol. 187 (1), 249-256 (2005).
  7. Sandkvist, M. Type II secretion and pathogenesis. Infect Immun. 69 (6), 3523-3535 (2001).
  8. Brune, M., Hunter, J. L., Corrie, J. E. T., Webb, M. R. Direct, Real-time measurement of rapid inorganic phosphate release using a novel fluorescent probe and its application to actomyosin subfragment 1 ATPase. Biochimie. 33 (27), 8262-8271 (1994).
  9. Carter, S. G., Karl, D. W. Inorganic phosphate assay with malachite green: An improvement and evaluation. J Biochem Biophys Methods. 7 (1), 7-13 (1982).
  10. Henkel, R. D., VandeBerg, J. L., Walsh, R. A. A microassay for ATPase. Anal Biochem. 169 (2), 312-318 (1988).
  11. Harder, K. W., Owen, P., Wong, L. K. H., Aebersold, R., Clark-Lewis, I., Jirik, F. R. Characterization and kinetic analysis of the intracellular domain of human protein tyrosine phosphatase β (HPTP β) using synthetic phosphopeptides. Biochem J. 298 (2), 395-401 (1994).
  12. Camberg, J. L., Johnson, T. L., Patrick, M., Abendroth, J., Hol, W. G., Sandkvist, M. Synergistic stimulation of EpsE ATP hydrolysis by EpsL and acidic phospholipids. EMBO J. 26 (1), 19-27 (2006).
  13. McLaughlin, S. H., Smith, H. W., Jackson, S. E. Stimulation of the weak ATPase activity of human Hsp90 by a client protein. J Mol Biol. 315 (4), 787-798 (2002).
  14. Shiue, S., Kao, K., Leu, W., Chen, L., Chan, N., Hu, N. XpsE oligomerization triggered by ATP binding, not hydrolysis, leads to its association with XpsL. EMBO J. 25 (7), 1426-1435 (2006).
  15. Ghosh, A., Hartung, S., van der Does, C., Tainer, J. A., Albers, S. V. Archaeal flagellar ATPase motor shows ATP-dependent hexameric assembly and activity stimulation by specific lipid binding. Biochem J. 437 (1), 43-52 (2011).
  16. Savvides, S. N., et al. VirB11 ATPases are dynamic hexameric assemblies: new insights into bacterial type IV secretion. EMBO J. 22 (9), 1969-1980 (2003).
  17. Sanghera, J., Li, R., Yan, J. Comparison of the luminescent ADP-Glo assay to a standard radiometric assay for measurement of protein kinase activity. Assay Drug Dev Techn. 7 (6), 615-622 (2009).
  18. Sherman, D. J., et al. Decoupling catalytic activity from biological function of the ATPase that powers lipopolysaccharide transport. Proc Natl Acad Sci U S A. 111 (13), 4982-4987 (2014).
  19. Zhang, X., et al. Altered cofactor regulation with disease-associated p97/VCP mutations. Proc Natl Acad Sci U S A. 112 (14), E1705-E1714 (2015).
  20. Rowlands, M. G., Newbatt, Y. M., Prodromou, C., Pearl, L. H., Workman, P., Aherne, W. High-throughput screening assay for inhibitors of heat-shock protein 90 ATPase activity. Anal Biochem. 327 (2), 176-183 (2004).
check_url/fr/54305?article_type=t

Play Video

Citer Cet Article
Rule, C. S., Patrick, M., Sandkvist, M. Measuring In Vitro ATPase Activity for Enzymatic Characterization. J. Vis. Exp. (114), e54305, doi:10.3791/54305 (2016).

View Video