Summary

Die Herstellung von Inverted Kolloid-Kristallen Poly (Ethylenglycol) Scaffold: Eine dreidimensionale Zellkultur-Plattform für Leber-Tissue Engineering

Published: August 27, 2016
doi:

Summary

This manuscript presents a detailed protocol for the fabrication of an emerging three-dimensional hepatocyte culture platform, the inverted colloidal crystal scaffold, and the concomitant techniques to assess hepatocyte behavior. The size-controllable pores, interconnectivity and ability to conjugate extracellular matrix proteins to the poly(ethylene glycol) (PEG) scaffold enhance Huh-7.5 cell performance.

Abstract

Die Fähigkeit Hepatozyten Funktion in vitro zu halten, zum Zweck der Xenobiotika 'Zytotoxizität testen, Virusinfektion zu studieren und an der Leber zielgerichtete Medikamente zu entwickeln, erfordert eine Plattform in dem Zellen richtige biochemische und mechanische Signale empfangen. Recent Lebergewebe-Engineering-Systeme haben dreidimensionale (3D) Scaffolds synthetischen oder natürlichen zusammengesetzt aus Hydrogelen, verwendet werden, aufgrund ihrer hohen Wasserretention und ihre Fähigkeit, die mechanische Reize von den Zellen benötigt, bereitzustellen. Es wurde in der umgekehrten kolloidalen Kristall (ICC) Gerüst, eine neuere Entwicklung, die eine hohe räumliche Organisation, homotypische und heterotypic Zell-Interaktion erlaubt, sowie zellextrazellulären Matrix (ECM) Wechselwirkung wachsendes Interesse. Hier beschreiben wir ein Protokoll des ICC-Gerüst unter Verwendung von Poly (Ethylenglycol) diacrylat (PEGDA) und die Partikel Auslaugung Verfahren herzustellen. Kurz gesagt, wird ein Gitter aus Mikrokügelchen-Partikel hergestellt, wonach eine vorge polymer Lösung hinzugefügt wird , richtig polymerisiert, und die Partikel werden dann entfernt oder ausgewaschen, mit einem organischen Lösungsmittel (beispielsweise Tetrahydrofuran). Die Auflösung der Gitter ergibt ein hochporöses Gerüst mit kontrolliertem Porengrößen und interconnectivities die Medien erlauben Zellen leichter zu erreichen. Diese einzigartige Struktur erlaubt hohe Oberfläche für die Zellen der PEGDA ICC Gerüst auch mit Proteinen sowie einfache Kommunikation zwischen den Poren, und die Fähigkeit zur Beschichtung anhaften zeigt eine deutliche Wirkung auf die Zellleistung. Wir analysieren die Morphologie des Gerüsts sowie die hepatocarcinoma Zelle (Huh-7.5) Verhalten in Bezug auf die Lebensfähigkeit und Funktion, um die Wirkung von ICC-Struktur und ECM-Beschichtungen zu erkunden. Insgesamt bietet dieses Papier ein detailliertes Protokoll einer sich abzeichnenden Gerüst, das breite Anwendungen im Tissue Engineering hat, hier vor allem technische Lebergewebe.

Introduction

Die Leber ist ein stark vaskularisierten Organ mit einer Vielzahl von Funktionen, einschließlich der Entgiftung des Blutes, Metabolismus von Xenobiotika und der Produktion von Serumproteinen. Lebergewebe hat eine komplexe dreidimensionale (3D) Mikrostruktur, bestehend aus mehreren Zelltypen, Gallenkanälchen, Sinusoiden und Zonen unterschiedlicher Biomatrix Zusammensetzung und verschiedenen Sauerstoffkonzentrationen. In Anbetracht dieser aufwendigen Struktur, ist es schwierig gewesen 1 eine richtige Lebermodell in vitro zu erzeugen. Allerdings gibt es eine steigende Nachfrage nach funktionellen in vitro – Modelle humanen Hepatozyten als Plattformen für die Prüfung Medikamententoxizität 2 – Hosting und Erkrankungen der Leber 3 zu studieren.

Stromlebergewebe – Engineering – Plattformen haben die Komplexität der Leber vereinfacht eine durch Isolieren oder auf ein paar Fokussieren der Parameter des Leber, nämlich Co-Kultur von Zellen 4, biochemische Zusammensetzung der zonal Mikroumgebungen 5, Strömungsdynamik 6,7 und die Konfiguration der Biomatrix 8. Konfiguration der Biomatrix kann in Parametern wie Gerüstmaterial gebrochen werden, die Zusammensetzung der extrazellulären Matrix (ECM) Proteine, matrix Steifigkeit sowie das Design und die Struktur des Gerüsts. Es hat sich zu einem Anstieg der Tissue – Engineering – Studien synthetische Hydrogele unter Verwendung, insbesondere Poly (ethylenglycol) (PEG) Hydrogele 9, da die Fähigkeit zur Abstimmung der mechanischen Eigenschaften des Hydrogels, Bioaktivität und Abbaugeschwindigkeit. In Bezug auf Leberbezogene Forschung wurde das biokompatible Hydrogel für Virusinfektion Studie der Lebererkrankung 3 angewendet. Als Hepatozyten – Plattform – Design haben zahlreiche Studien Hepatozyten Sandwichkulturen 10,11 und Zellverkapselung innerhalb eines 12,13 Hydrogels verwendet , um die 3D – Umgebung und Zell-ECM und Zell-Zell – Wechselwirkung , die in vivo – Mikroumgebung nachzuahmen wesentlich sind bereitzustellen. However sind diese Plattformen nicht ein hohes Maß an Kontrolle und räumliche Organisation besitzen, was zu einer ungleichmäßigen Eigenschaften durch das Gerüst 14.

Das invertierte Kristall kolloidalen (ICC) 14 Gerüst ist eine hochorganisierte 3D – Gerüst für die Zellkultur , die zuerst in den frühen 2000er Jahren eingeführt wurde. unter Verwendung eines Kolloid-Kristall, ein geordnetes Gitter von kolloidalen Teilchen mit variablem Durchmesser der einzigartigen Struktur des Gerüsts kann dem einfachen Herstellungsprozess zurückgeführt werden. Kurz gesagt werden die Verfahren zusammenzufassen, Partikel ordentlich angeordnet und unter Verwendung von Wärme geglüht ein Gitter zu bilden. Die Auslaugung dieses Gitters, durch ein organisches Lösungsmittel, in einem polymerisierten Hydrogels Ergebnisse in hexagonal gepackte kugelförmige Hohlräume 15 mit hoher Oberfläche. Diese hochgeordnete Gerüst sowohl mit synthetischen und natürlichen Materialien , die zuvor hergestellt wurde, einschließlich , aber nicht beschränkt auf Poly (acrylamid) , 16-21, Poly (milch-co-glykolsäure) 15,22-30, Poly (ethylenglykol) 31,32, Poly (2-hydroxyethylmethacrylat) 21,33-35, 36-39 und Chitosan. ICC Gerüste aus nicht-Fouling – Materialien neigen dazu , zelluläre Sphäroiden innerhalb der Hohlräume 14,23,40 zu fördern. Mehrere Zelltypen wurden 43,44 Zellen gezeigt, erfolgreich proliferieren, differenzieren und Funktion innerhalb dieser Konfiguration einschließlich Chondrozyten 41, Stromazellen des Knochenmarks 42 und einzudämmen. Bezug Hepatozyten wurden Untersuchungen mit ICC Scaffolds aus Na 2 SiO 3 und Poly (acrylamid), aber nicht PEG durchgeführt. Mit einfachen Biokonjugation Strategien (dh Aminkopplung durch EDC / NHS), ECM – Proteine ​​konjugierten PEG-Basis Gerüste hergestellt werden können, die mehr Zellbindungsstellen nachweisen kann , eine devivo – ähnliche Umgebung zu sein und die Leberfunktion zu verbessern.

In diesem Manuskript und der damit verbundenen Video, wir ausführlich die Herstellung des ICC Gerüstunter Verwendung von Poly (ethylenglykol) diacrylat (PEGDA) Hydrogels und eines Polystyrolmikrokügelchens Gitter, optimiert für Hepatokarzinom (Huh-7,5) Kultur. Wir veranschaulichen die Unterschiede zwischen den im allgemeinen nicht klebende bare PEGDA ICC Gerüste und der kollagenbeschichteten PEGDA ICC Gerüsts in Bezug auf die Gerüsttopologie und Zellleistung. Die Lebensfähigkeit der Zellen und Funktion werden qualitativ und quantitativ gemessen Huh-7.5 Zellverhalten zu beurteilen.

Protocol

1. ICC Scaffold Fabrication (Abbildung 1) Bereiten Sie die Polystyrol (PS) Gitter (Durchmesser = 6 mm; 8-13 Schichten von Kugeln). Um die Form vorbereiten, schneiden Sie die Spitzen von 0,2 ml kochfesten Mikrozentrifugenröhrchen auf 40 & mgr; l-Ebene ab. Halten Sie die Spitze der Cut-Rohre bis 24 x 60 mm 2 Mikroskop Deckglas rutscht mit wasserfesten Kleber. Setzen Sie die PS-Kugeln (Durchmesser = 140 & mgr; m) in einer wässrigen Suspension enthalten ist, in einem 20 ml …

Representative Results

Die repräsentative Ergebnisse für die strukturelle Charakterisierung des ICC Gerüst und den Vergleich der einzelnen ICC Wirksamkeit des Gerüsts Zustand Hepatozyten in die Kultivierung sind unten dargestellt und erläutert. Die ICC Gerüstbedingungen in diesen Ergebnissen sind Kollagenbeschichtungen von 0 & mgr; g / ml (Bare), 20 & mgr; g / ml (Collagen 20), 200 & mgr; g / ml (Collagen 200) und 400 ug / ml (Collagen 400) und dem anfänglichen huh-7.5 Zellaussaat Zahl ist 1…

Discussion

Tissue Engineering Gerüste entwickeln sich schnell notwendig , alle physikalischen und biochemischen Signale zu schaffen , sich zu regenerieren, zu warten oder zu reparieren Gewebe für die Anwendung von Organersatz, Krankheiten zu studieren, die Entwicklung von Medikamenten, und viele andere 57. In der Leber Tissue Engineering, verlieren primäre humane Hepatozyten schnell ihre metabolischen Funktionen einmal aus dem Körper isoliert, einen großen Bedarf an Engineering-Gerüste Schaffung und Entwicklung vo…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Die Autoren möchten Unterstützung von einer National Research Foundation Fellowship (NRF -NRFF2011-01) und Competitive Research Programme (NRF-CRP10-2012-07) anzuerkennen.

Materials

0.2 mL PCR tube Axygen Scientific PCR-02D-C Boil-proof
Gorilla Glue Gorilla Glue, Inc. Depends on vendor. This was purchased from a local store.
Glass slides VWR  631-1575 Dimensions: 24×60 mm
Polystyrene spheres  Fisher Scientific TSS#4314A Diameter = 140 um; 3×10^4 particles per milliliter and 1.4% size distribution
Ethanol Merck 1.00983.1011 absolute for analysis EMSURE; Dilute to 70% with Milli-Q water
Ultrasonic Bath Elma S10H Equiment
Furnace Nabertherm N7/H Equipment
200 µL pipette tip Axygen Scientific T-210-Y-R-S
Rocking shaker VWR 444-0142
Polyethylene Glycol (PEG) Merck 1.09727.0100 Mw= 4kDa; acrylation of PEG monomers and purification of the resulting precipitate produces a PEGDA macromer with Mw = 4.6kDa
Centrifuge Beckman Coulter 392932 Equipment
Acrylate-Poly (Ethylene Glycol) – Succinimidyl Valerate  Laysan Bio ACRL-PEG-SVA-3400-1g Mw = 3.4 kDa
2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone Sigma Aldrich 410896
Vortex VWR 58816-123 Equipment
Microcentrifuge Eppendorf 5404 000.413
Paraffin Film  Parafilm M  #PM996 Kept at 9" with allows intensity of 10.84 mW/cm^2
Bluewave 200 UV spotlight Blaze Technology  120008, 122300
Tetrahydrofuran (THF) Merck 107025
Orbital shaker Heidolph 543-123120-00-5 From rat
Collagen Type I Sigma Aldrich C3867-1VL 1X, w/o CaCl & MgCl; Ph = 7.2
Phosphate Buffered Saline (PBS)  Gibco 20012-027 16% W/V AQ. 10x10ml
Paraformaldehyde VWR 43368.9M Equipment
Freezone 4.5 freeze drier Labconco 7750020 Equipment
Sputter coater Jeol Ltd. JFC-1600 Equipment
Scanning Electron Microscope Jeol Ltd. JSM 5310
Anti-mouse primary antibodies against Collagen type I Abcam ab6308
Anti-mouse secondary antibody conjugated with Alexa Fluor 488 Life Technologies A21121
Plate, Tissue Culture 24 Well, Flat Bottom (Nunclon)  Bio-Rev PTE LTD 3820-024
Dulbecco's Modified Eagle's Medium(DMEM)
2.5 g/L Glucose w/ L-Gln
Lonza 12-604F
Fetal Bovine Serum (FBS) Gibco A15-151
Penicillin-Streptomycin (P/S) Life Tchnologies 15140-122 E
APC49‐Huh ‐7.5 Cell Line Apath
100 mm Corning non-treated culture dishes Sigma Aldrich CLS430591
0.25% Trypsin-EDTA Gibco 25200-056 Equipment; 37°C, 5% Humidity
Forma Steri-Cycle CO2 Incubators Thermofisher Scientific 371
Hausser Bright-Line Phase Hemacytometer Thermofisher Scientific 02-671-6
Live/Dead Viability/Cytotoxicity Kit 'for mammalian cells Life Technologies L3224 
CCK-8 Assay Dojindo Laboratories CK04-11 Monosodium-salt reagent (MSR)
Infinite 200 PRO microplate reader  Tecan
Albumin Human ELISA kit Abcam ab108788
Triton X-100 Bio-Rad #1610407
Bovine Serum Albumin (BSA) Sigma-Aldrich A2153-50G
Anti-mouse primary antibodies (against CYP3A4, albumin) Santa Cruz Biotechnology sc-53850; sc-271605
DAPI Life Technologies D3571
Alexa Fluor 555 labelled Phalloidin Life Technologies A34055
Trizol Life Technologies 15596-026
Chloroform VWR 22706.326
Isopropanol Fisher Scientific 67-63-0
DPEC water Thermofisher Scientific AM9916
Nanodrop 2000c Spectrophotometer Thermofisher Scientific ND-2000
iScript Reverse Transcription Supermix  Bio-Rad Laboratories 1708840
SYBR select Master Mix for CFX Life Technology 4472937
Primers (to be chosen)
CFX96 Real-Time System, C-1000 Touch Thermal Cycler Bio Rad Laboratories SOFT-CFX-31-PATCH 

References

  1. Yamada, M., et al. Controlled formation of heterotypic hepatic micro-organoids in anisotropic hydrogel microfibers for long-term preservation of liver-specific functions. Biomaterials. 33 (33), 8304-8315 (2012).
  2. Abboud, G., Kaplowitz, N. Drug-induced liver injury. Drug Safety. 30 (4), 277-294 (2007).
  3. Cho, N. J., et al. Viral infection of human progenitor and liver-derived cells encapsulated in three-dimensional PEG-based hydrogel. Biomed Mater. 4 (1), (2009).
  4. Revzin, A., et al. Designing a hepatocellular microenvironment with protein microarraying and poly (ethylene glycol) photolithography. Langmuir. 20 (8), 2999-3005 (2004).
  5. Sato, A., Kadokura, K., Uchida, H., Tsukada, K. An in vitro hepatic zonation model with a continuous oxygen gradient in a microdevice. Biochem Bioph Res Com. 453 (4), 767-771 (2014).
  6. Domansky, K., et al. Perfused multiwell plate for 3D liver tissue engineering. Lab Chip. 10 (1), 51-58 (2010).
  7. Hegde, M., et al. Dynamic interplay of flow and collagen stabilizes primary hepatocytes culture in a microfluidic platform. Lab Chip. 14 (12), 2033-2039 (2014).
  8. Flaim, C. J., Chien, S., Bhatia, S. N. An extracellular matrix microarray for probing cellular differentiation. Nat methods. 2 (2), 119-125 (2005).
  9. Underhill, G. H., Chen, A. A., Albrecht, D. R., Bhatia, S. N. Assessment of hepatocellular function within PEG hydrogels. Biomaterials. 28 (2), 256-270 (2007).
  10. Dunn, J., Tompkins, R. G., Yarmush, M. L. Hepatocytes in collagen sandwich: evidence for transcriptional and translational regulation. J cell biol. 116 (4), 1043-1053 (1992).
  11. Dunn, J. C., Tompkins, R. G., Yarmush, M. L. Long-term in vitro function of adult hepatocytes in a collagen sandwich configuration. Biotechnol progr. 7 (3), 237-245 (1991).
  12. Ling, Y., et al. A cell-laden microfluidic hydrogel. Lab Chip. 7 (6), 756-762 (2007).
  13. Kim, M., Lee, J. Y., Jones, C. N., Revzin, A., Tae, G. Heparin-based hydrogel as a matrix for encapsulation and cultivation of primary hepatocytes. Biomaterials. 31 (13), 3596-3603 (2010).
  14. Kotov, N. A., et al. Inverted Colloidal Crystals as Three-Dimensional Cell Scaffolds. Langmuir. 20 (19), 7887-7892 (2004).
  15. Shanbhag, S., Woo Lee, J., Kotov, N. Diffusion in three-dimensionally ordered scaffolds with inverted colloidal crystal geometry. Biomaterials. 26 (27), 5581-5585 (2005).
  16. Lee, Y. H., Huang, J. R., Wang, Y. K., Lin, K. H. Three-dimensional fibroblast morphology on compliant substrates of controlled negative curvature. Integr Biol. 5, 1447-1455 (2013).
  17. da Silva, J., Lautenschlager, F., Kuo, C. H. R., Guck, J., Sivaniah, E. 3D inverted colloidal crystals in realistic cell migration assays for drug screening applications. Integr Biol. 3, 1202-1206 (2011).
  18. da Silva, J., Lautenschlager, F., Sivaniah, E., Guck, J. R. The cavity-to-cavity migration of leukaemic cells through 3D honey-combed hydrogels with adjustable internal dimension and stiffness. Biomaterials. 31, 2201-2208 (2010).
  19. Lee, J., Lilly, G. D., Doty, R. C., Podsiadlo, P., Kotov, N. A. In vitro toxicity testing of nanoparticles in 3D cell culture. Small. 5, 1213-1221 (2009).
  20. Lee, J., Kotov, N. A. Notch ligand presenting acellular 3D microenvironments for ex vivo human hematopoietic stem-cell culture made by layer-by-layer assembly. Small. 5, 1008-1013 (2009).
  21. Liu, Y., et al. Rapid aqueous photo-polymerization route to polymer and polymer-composite hydrogel 3D inverted colloidal crystal scaffolds. J Biomed Mater Res. Part A. 83, 1-9 (2007).
  22. Ma, P. X., Choi, J. W. Biodegradable polymer scaffolds with well-defined interconnected spherical pore network. Tissue Eng. 7, 23-33 (2001).
  23. Cuddihy, M. J., Kotov, N. A. Poly (lactic-co-glycolic acid) bone scaffolds with inverted colloidal crystal geometry. Tissue Eng Part A. 14, 1639-1649 (2008).
  24. Choi, S. W., Zhang, Y., Xia, Y. Three-dimensional scaffolds for tissue engineering: the importance of uniformity in pore size and structure. Langmuir. 26, 19001-19006 (2010).
  25. Choi, S. W., Zhang, Y., Thomopoulos, S., Xia, Y. In vitro mineralization by preosteoblasts in poly(DL-lactide-co-glycolide) inverse opal scaffolds reinforced with hydroxyapatite nanoparticles. Langmuir. 26, 12126-12131 (2010).
  26. Choi, S. W., Zhang, Y., Macewan, M. R., Xia, Y. Neovascularization in biodegradable inverse opal scaffolds with uniform and precisely controlled pore sizes. Adv Healthc Mater. 2, 145-154 (2013).
  27. Zhang, Y., Choi, S. W., Xia, Y. Modifying the Pores of an Inverse Opal Scaffold With Chitosan Microstructures for Truly Three-Dimensional Cell Culture. Macromol Rapid Commun. 33, 296-301 (2012).
  28. Cai, X., et al. Investigation of neovascularization in three-dimensional porous scaffolds in vivo by a combination of multiscale photoacoustic microscopy and optical coherence tomography. Tissue Eng. Part C, Meth. 19, 196-204 (2013).
  29. Zhang, Y. S., Yao, J., Wang, L. V., Xia, Y. Fabrication of Cell Patches Using Biodegradable Scaffolds with a Hexagonal Array of Interconnected Pores (SHAIPs). Polymer. 55, 445-452 (2014).
  30. Zhang, Y. S., Regan, K. P., Xia, Y. Controlling the Pore Sizes and Related Properties of Inverse Opal Scaffolds for Tissue Engineering Applications. Macromol Rapid Commun. 34, 485-491 (2013).
  31. Stachowiak, A. N., Bershteyn, A., Tzatzalos, E., Irvine, D. J. Bioactive Hydrogels with an Ordered Cellular Structure Combine Interconnected Macroporosity and Robust Mechanical Properties. Adv Mater. 17, 399-403 (2005).
  32. Stachowiak, A. N., Irvine, D. J. Inverse opal hydrogel-collagen composite scaffolds as a supportive microenvironment for immune cell migration. J Biomed Mater Res. Part A. 85, 815-828 (2008).
  33. Liu, Y., Wang, S. 3D inverted opal hydrogel scaffolds with oxygen sensing capability. Colloids and surfaces. B, Biointerfaces. 58, 8-13 (2007).
  34. Bryant, S. J., Cuy, J. L., Hauch, K. D., Ratner, B. D. Photo-patterning of porous hydrogels for tissue engineering. Biomaterials. 28, 2978-2986 (2007).
  35. Bhrany, A. D., Irvin, C. A., Fujitani, K., Liu, Z., Ratner, B. D. Evaluation of a sphere-templated polymeric scaffold as a subcutaneous implant. JAMA facial plastic surgery. 15, 29-33 (2013).
  36. Kuo, Y. C., Chiu, K. H. Inverted colloidal crystal scaffolds with laminin-derived peptides for neuronal differentiation of bone marrow stromal cells. Biomaterials. 32 (3), 819-831 (2011).
  37. Yang, J. T., Kuo, Y. C., Chiu, K. H. Peptide-modified inverted colloidal crystal scaffolds with bone marrow stromal cells in the treatment for spinal cord injury. Colloids Surf. B, Biointerfaces. 84, 198-205 (2011).
  38. Kuo, Y. C., Tsai, Y. T. Inverted colloidal crystal scaffolds for uniform cartilage regeneration. Biomacromolecules. 11, 731-739 (2010).
  39. Choi, S. W., Xie, J., Xia, Y. Chitosan-Based Inverse Opals: Three-Dimensional Scaffolds with Uniform Pore Structures for Cell Culture. Adv Mater. 21, 2997-3001 (2009).
  40. Long, T. J., Sprenger, C. C., Plymate, S. R., Ratner, B. D. Prostate cancer xenografts engineered from 3D precision-porous poly(2-hydroxyethyl methacrylate) hydrogels as models for tumorigenesis and dormancy escape. Biomaterials. 35, 8164-8174 (2014).
  41. Kuo, Y. C., Tsai, Y. T. Inverted colloidal crystal scaffolds for uniform cartilage regeneration. Biomacromolecules. 11, 731-739 (2010).
  42. Kuo, Y. C., Chiu, K. H. Inverted colloidal crystal scaffolds with laminin-derived peptides for neuronal differentiation of bone marrow stromal cells. Biomaterials. 32, 819-831 (2011).
  43. Lee, J., Cuddihy, M. J., Cater, G. M., Kotov, N. A. Engineering liver tissue spheroids with inverted colloidal crystal scaffolds. Biomaterials. 30 (27), 4687-4694 (2009).
  44. Galperin, A., et al. Integrated bi-layered scaffold for osteochondral tissue engineering. Adv Healthc Mater. 2, 872-883 (2013).
  45. Waters, D. J., et al. Morphology of Photopolymerized End-linked Poly(ethylene glycol) Hydrogels by Small Angle X-ray Scattering. Macromolecules. 43 (16), 6861-6870 (2010).
  46. Elbert, D. L., Hubbell, J. A. Conjugate addition reactions combined with free-radical cross-linking for the design of materials for tissue engineering. Biomacromolecules. 2 (2), 430-441 (2001).
  47. Kim, M. H., et al. Biofunctionalized Hydrogel Microscaffolds Promote Three-Dimensional Hepatic Sheet Morphology. Macromol Biosci. , (2015).
  48. Ferreira, T., Rasband, W. . ImageJ User Guide. , (2012).
  49. JoVE Science Education Database. . General Laboratory Techniques. Introduction to Fluorescence Microscopy. , (2015).
  50. Tominaga, H., et al. A water-soluble tetrazolium salt useful for colorimetric cell viability assay. Anal Commun. 36 (2), 47-50 (1999).
  51. JoVE Science Education Database. . General Laboratory Techniques. Introduction to the Microplate Reader. , (2015).
  52. JoVE Science Education Database. . Basic Methods in Cellular and Molecular Biology. The ELISA Method. , (2015).
  53. Nolan, T., Hands, R. E., Bustin, S. A. Quantification of mRNA using real-time RT-PCR. Nat Protoc. 1, 1559-1582 (2006).
  54. JoVE Science Education Database. . Essentials of Environmental Microbiology. RNA Analysis of Environmental Samples Using RT-PCR. , (2016).
  55. JoVE Science Education. . Essentials of Environmental Microbiology. , (2015).
  56. Jeong, S., et al. The evolution of gene regulation underlies a morphological difference between two Drosophila sister species. Cell. 132 (5), 783-793 (2008).
  57. Griffith, L. G., Naughton, G. Tissue engineering–current challenges and expanding opportunities. Science. 295 (5557), 1009-1014 (2002).
  58. Hegde, M., et al. Dynamic Interplay of Flow and Collagen Stabilizes Primary Hepatocytes Culture in a Microfluidic Platform. Lab Chip. 14, 2033-2039 (2014).
  59. Kim, Y., Lasher, C. D., Milford, L. M., Murali, T., Rajagopalan, P. A comparative study of genome-wide transcriptional profiles of primary hepatocytes in collagen sandwich and monolayer cultures. Tissue Eng Pt C. 16 (6), 1449-1460 (2010).
  60. Baimakhanov, Z., et al. Efficacy of multi-layered hepatocyte sheet transplantation for radiation-induced liver damage and partial hepatectomy in a rat model. Cell Transplant. , (2015).
  61. Li, C. Y., et al. Micropatterned Cell-Cell Interactions Enable Functional Encapsulation of Primary Hepatocytes in Hydrogel Microtissues. Tissue Eng Pt A. 20 (15-16), 2200-2212 (2014).
  62. Shlomai, A., et al. Modeling host interactions with hepatitis B virus using primary and induced pluripotent stem cell-derived hepatocellular systems. P Natl A Sci USA. 111 (33), 12193-12198 (2014).
  63. Curcio, E., et al. Mass transfer and metabolic reactions in hepatocyte spheroids cultured in rotating wall gas-permeable membrane system. Biomaterials. 28, 5487-5497 (2007).
  64. Martinez-Hernandez, A., Amenta, P. The hepatic extracellular matrix. Vichows Archiv A Pathol Anat. 423, 1-11 (1993).
  65. Liu, Y., Wang, S., Lee, J. W., Kotov, N. A. A Floating Self-Assembly Route to Colloidal Crystal Templates for 3D Cell Scaffolds. Chem Mater. 17 (20), 4918-4924 (2005).
check_url/fr/54331?article_type=t

Play Video

Citer Cet Article
Shirahama, H., Kumar, S. K., Jeon, W., Kim, M. H., Lee, J. H., Ng, S. S., Tabaei, S. R., Cho, N. Fabrication of Inverted Colloidal Crystal Poly(ethylene glycol) Scaffold: A Three-dimensional Cell Culture Platform for Liver Tissue Engineering. J. Vis. Exp. (114), e54331, doi:10.3791/54331 (2016).

View Video