Summary

设计微流体装置用于研究细胞反应在单人或共存化工/电气/剪切应力刺激

Published: August 13, 2016
doi:

Summary

Micro-fabricated devices integrated with fluidic components provide an in vitro platform for cell studies mimicking the in vivo micro-environment. We developed polymethylmethacrylate-based microfluidic chips for studying cellular responses under single or coexisting chemical/electrical/shear stress stimuli.

Abstract

微流体设备能够创建pH值,温度,盐浓度,和其它物理或化学刺激的精确和可控的细胞微环境。他们已经通过像环境在体内提供了通常用于体外细胞研究。尤其,细胞如何响应于化学梯度,电场,应力和剪应力引起了许多利益,因为这些现象对理解细胞特性和功能非常重要。这些微流体芯片可以由玻璃基板,硅晶片,聚二甲基硅氧烷(PDMS)聚合物,聚甲基丙烯酸甲酯(PMMA)基片,或聚对苯二甲酸乙酯(PET)衬底。出这些材料,PMMA基底是便宜的,并且可以使用激光烧蚀和书写容易加工。虽然一些微流体装置已被设计和制造用于产生多个共存化学和电刺激,其中没有一个被认为是够在减少实验重复序列,特别是用于筛选目的有效。在这份报告中,我们描述了我们的两个基于PMMA微流控芯片设计和制造用于研究细胞反应,在生产活性氧和迁移,下单或共存化学/电气/剪切应力刺激。第一芯片产生五个相对浓度0,1/8,1/2,7/8,和1在培养的区域,与内部这些领域中产生的剪切应力梯度在一起。第二芯片产生相同的相对浓度,但与各培养区中创建的五个不同的电场强度。这些装置不仅提供细胞与精确,可控的微环境,也大大增加了实验的吞吐量。

Introduction

体内细胞通过各种生物分子,包括细胞外基质(ECM),碳水化合物,脂质,细胞和其它细胞的包围。它们官能通过响应微环境刺激如使用ECM相互作用和反应的各种生长因子的化学梯度。传统上, 在体外细胞研究是在细胞培养皿进行,其中细胞和试剂的消耗大,细胞生长在静态(非循环)环境。最近,随着流体部件集成的微制造的器件中的更可控的方式提供了用于细胞的研究的替代的平台。这样的装置能够同时最大限度地减少细胞和试剂的消耗产生的化学和物理刺激的精确微环境。这些微流体芯片可以由玻璃基板,硅晶片,聚二甲基硅氧烷(PDMS)聚合物,聚甲基丙烯酸甲酯(PMMA)基片,或polyethylenetere邻苯二甲酸酯(PET)的基板1-3。基于PDMS的设备是透明的,生物相容的,并能透过气体,使它们适合于长期的细胞培养和研究。 PMMA和PET基材是廉价和易于使用激光烧蚀和写作进行处理。

微流体装置应提供细胞与稳定可控的微环境,其中细胞受到不同的化学和物理刺激。例如,微流体芯片被用来研究细胞的趋化性。而不是雇用Boyden小室和毛细管4,5这些微型流体装置能产生精确的化学梯度用于研究细胞的行为1,6,7传统的方法。另一例子是研究细胞的下电场功率(EFs),一个electrotaxis现象名为定向迁移。据报道细胞Electrotactic行为可能与神经再生8,胚胎发育9和伤口愈合10,11。许多研究已经进行了调查各种细胞类型,包括癌细胞12,13的electrotaxis,淋巴细胞14,15,白血病细胞11,和干细胞16。按照惯例,培养皿和盖玻片用于构建electrotactic室产生的EF 17。这种简单的设置姿势介质蒸发和不精确EF的问题,但是它们可以通过封闭的,明确定义的流体通道12,18,19的微流体装置来克服。

为了系统地研究下精确,可控化学和电刺激细胞的反应,这将是很有用处的发展能够同时提供多个刺激细胞的微流体装置。例如,Li 等人 。报告基于​​PDMS-微流体装置,用于创建单个或共存化学梯度和EFS 20。 Kao 。开发私奔类似微流体芯片由EF文件6调节肺癌细胞的趋化性。此外,为了提高吞吐量,侯等人 。设计和制作基于PMMA-多声道的双电场芯片,提供细胞与8种不同组合的刺激,是(2 EF优势×4化学物浓度)21。为了进一步增加整个并添加剪切应力刺激,我们开发了两个PMMA基微流体装置根据单个或共存化学/电/剪切应力刺激研究细胞应答。

由Lo 22,23报道,这些设备包括五个独立的细胞培养渠道受到持续流体流动,模仿体内循环系统。在第一芯片(化学剪切应力芯片或CSS的芯片),五个相对浓度为0,1/8,1/2,7/8,和1在培养区域生成,并剪切应力梯度是机生产线土木工程署内各五个文化领域。在第二芯片(该化学电场芯片或CEF芯片),通过使用一个单组电极和第2注射泵中,除了这些培养区域内五个不同的化学浓度时,产生五个EF强度。数值计算和模拟执行,以便更好地设计和操作这些芯片,而这些设备内培养肺癌细胞受到单个或共存刺激用于相对于观察到的活性氧物种的它们的响应(ROS),迁移率,和运移方向。这些芯片被证明是节省时间,高吞吐量和可靠的器件用于研究细胞对各种微环境刺激的反应。

Protocol

1.芯片设计和制造绘制图案被使用商业软件24的PMMA基板和双面胶带消融。 研究化学浓度和剪切应力的影响,在其每五个培养区( 图1A和1B)的端绘制具有变化宽度的“圣诞树”的图案。 研究化学浓度和电场的影响,绘制了“圣诞树”的图案为盐桥两个流体通道( 图2A和2B)。 划线上的聚甲基丙烯酸甲酯?…

Representative Results

化学 – 剪切应力(CSS)芯片 CSS的芯片进行了三次PMMA板,每个的厚度为1毫米,经由两个双面胶带连接在一起,每一个的厚度0.07毫米( 图1A和1B)的。的“圣诞树”结构产生的0 5相对浓度,1/8,1/2,7/8和1中的五个培养领域。由培养面积设计为三角形,剪切应力梯度,与相关的体积流速,流体粘度和流体?…

Discussion

PMMA基芯片使用激光烧蚀和写入与基于PDMS芯片,从而需要更复杂的软光刻当它们是便宜和更容易的方法制造。设计的微流体芯片之后,在制造和装配可以只在5分钟内完成。有迹象表明,应注意在执行实验中支付给一些关键的步骤。首先是“组装”的问题。适配器应适当粘在最上面的层的芯片。如果施加太大胶可能泄漏进入流体通道,并且如果使用太少的胶液可能泄漏出来的芯片。另外,在组装的…

Divulgations

The authors have nothing to disclose.

Acknowledgements

This work was financially supported by the Ministry of Science and Technology of Taiwan under Contract No. MOST 104-2311-B-002-026 (K. Y. Lo), No. MOST 104-2112-M-030-002 (Y. S. Sun), and National Taiwan University Career Development Project (103R7888) (K. Y. Lo). The authors also thank the Center for Emerging Material and Advanced Devices, National Taiwan University, for the use of the cell culture room.

Materials

Dulbecco's Modified Eagle Medium (DMEM) Gibco 11965-092 Cell culture medium
Trypsin Gibco 25300-054 detach cell from the dish
Fetal bovine serum (FBS) Gibco 10082147 Cell culture medium
10-cm cell culture Petri dish Nunc 150350 Cell culture
Bright-Line Hemacytometer Sigma Z359629 Cell Counting Equipment
PMMA Customized Customized Microfluidic chip
Adaptor Customized Customized Microfluidic chip
0.07/0.22 mm double-sided tape  3M 8018/9088 Microfluidic chip
Low melting point agarose Sigma A9414 Salt bridge
2'-7'-dichlorodihydrofluoresce diacetate Sigma D6883 Intracellular ROS measurement
Indium tin oxide (ITO) glass Merck 300739 Heater
Proportional-integral-derivative controller  JETEC Electronics Co. TTM-J4-R-AB Temperature controller
Thermal coupler TECPEL TPK-02A Temperature controller
CO2 laser scriber Laser Tools & Technics Corp. ILS2 Microfluidic chip fabrication
Syringe pumps New Era NE-300 Pumping medium and chemicals into the chip
Power supply Major Science  MP-300V Supplying direct currents
Inverted microscope Olympus CKX41 Monitoring cell migration
Inverted fluorescent microscope Nikon TS-100 Monitoring cell migartion and fluorescencent signals
DSLR camera Canon 60D Recording bright-field images 
CCD camera Nikon DS-Qi1 Recording fluorescent images 
super glue 3M Scotch 7004 Attaching adaptors to PMMA substrates
AutoCAD Autodesk Inc. Designing microfluidic chips
DMSO Sigma D8418 Dissolving DCFDA
ImgeJ National Institutes of Health Quantifying fluorescent intensities and cell migration

References

  1. Cheng, J. Y., Yen, M. H., Kuo, C. T., Young, T. H. A transparent cell-culture microchamber with a variably controlled concentration gradient generator and flow field rectifier. Biomicrofluidics. 2, (2008).
  2. Terry, S. C., Jerman, J. H., Angell, J. B. Gas-Chromatographic Air Analyzer Fabricated on a Silicon-Wafer. Ieee T Electron Dev. 26, 1880-1886 (1979).
  3. Whitesides, G. M., Ostuni, E., Takayama, S., Jiang, X., Ingber, D. E. Soft lithography in biology and biochemistry. Annu Rev Biomed Eng. 3, 335-373 (2001).
  4. Adler, J. Chemoreceptors in bacteria. Science. 166, 1588-1597 (1969).
  5. Boyden, S. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J Exp Med. 115, 453-466 (1962).
  6. Kao, Y. C., et al. Modulating chemotaxis of lung cancer cells by using electric fields in a microfluidic device. Biomicrofluidics. 8, 024107 (2014).
  7. Walker, G. M., et al. Effects of flow and diffusion on chemotaxis studies in a microfabricated gradient generator. Lab Chip. 5, 611-618 (2005).
  8. Al-Majed, A. A., Neumann, C. M., Brushart, T. M., Gordon, T. Brief electrical stimulation promotes the speed and accuracy of motor axonal regeneration. J Neurosci. 20, 2602-2608 (2000).
  9. Nuccitelli, R. Endogenous electric fields in embryos during development, regeneration and wound healing. Radiat Prot Dosim. 106, 375-383 (2003).
  10. McCaig, C. D., Rajnicek, A. M., Song, B., Zhao, M. Controlling cell behavior electrically: Current views and future potential. Physiol Rev. 85, 943-978 (2005).
  11. Tai, G., Reid, B., Cao, L., Zhao, M. Electrotaxis and wound healing: experimental methods to study electric fields as a directional signal for cell migration. Methods Mol Biol. 571, 77-97 (2009).
  12. Huang, C. W., Cheng, J. Y., Yen, M. H., Young, T. H. Electrotaxis of lung cancer cells in a multiple-electric-field chip. Biosens Bioelectron. 24, 3510-3516 (2009).
  13. Yan, X. L., et al. Lung Cancer A549 Cells Migrate Directionally in DC Electric Fields With Polarized and Activated EGFRs. Bioelectromagnetics. 30, 29-35 (2009).
  14. Li, J., et al. Activated T lymphocytes migrate toward the cathode of DC electric fields in microfluidic devices. Lab Chip. 11, 1298-1304 (2011).
  15. Lin, F., et al. Lymphocyte electrotaxis in vitro and in vivo. J Immunol. 181, 2465-2471 (2008).
  16. Zhang, J., et al. Electrically Guiding Migration of Human Induced Pluripotent Stem Cells. Stem Cell Rev. , (2011).
  17. Song, B., et al. Application of direct current electric fields to cells and tissues in vitro and modulation of wound electric field in vivo. Nat Protoc. 2, 1479-1489 (2007).
  18. Sun, Y. S., Peng, S. W., Cheng, J. Y. In vitro electrical-stimulated wound-healing chip for studying electric field-assisted wound-healing process. Biomicrofluidics. 6, 34117 (2012).
  19. Sun, Y. S., Peng, S. W., Lin, K. H., Cheng, J. Y. Electrotaxis of lung cancer cells in ordered three-dimensional scaffolds. Biomicrofluidics. 6, (2012).
  20. Li, J., Zhu, L., Zhang, M., Lin, F. Microfluidic device for studying cell migration in single or co-existing chemical gradients and electric fields. Biomicrofluidics. 6, 24121-2412113 (2012).
  21. Hou, H. S., Tsai, H. F., Chiu, H. T., Cheng, J. Y. Simultaneous chemical and electrical stimulation on lung cancer cells using a multichannel-dual-electric-field chip. Biomicrofluidics. 8, 052007 (2014).
  22. Lo, K. Y., Wu, S. Y., Sun, Y. S. A microfluidic device for studying the production of reactive oxygen species and the migration in lung cancer cells under single or coexisting chemical/electrical stimulation. Microfluid Nanofluidics. 20, 15 (2016).
  23. Lo, K. Y., Zhu, Y., Tsai, H. F., Sun, Y. S. Effects of shear stresses and antioxidant concentrations on the production of reactive oxygen species in lung cancer cells. Biomicrofluidics. 7, 64108 (2013).
  24. Cheng, J. Y., Wei, C. W., Hsu, K. H., Young, T. H. Direct-write laser micromachining and universal surface modification of PMMA for device development. Sensor Actuat B-Chem. 99, 186-196 (2004).
  25. Chen, J. J. W., et al. Global analysis of gene expression in invasion by a lung cancer model. Cancer Res. 61, 5223-5230 (2001).
  26. Shih, J. Y., et al. Collapsin response mediator protein-1 and the invasion and metastasis of cancer cells. J Natl Cancer I. 93, 1392-1400 (2001).
  27. Lu, H., et al. Microfluidic shear devices for quantitative analysis of cell adhesion. Anal Chem. 76, 5257-5264 (2004).
  28. Fried, L. E., Arbiser, J. L. Honokiol, a Multifunctional Antiangiogenic and Antitumor Agent. Antioxid Redox Sign. 11, 1139-1148 (2009).
  29. Chisti, Y. Hydrodynamic damage to animal cells. Crit Rev Biotechnol. 21, 67-110 (2001).
  30. Davies, P. F., Remuzzi, A., Gordon, E. J., Dewey, C. F., Gimbrone, M. A. Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proc Natl Acad Sci U S A. 83, 2114-2117 (1986).
  31. Zoro, B. J., Owen, S., Drake, R. A., Hoare, M. The impact of process stress on suspended anchorage-dependent mammalian cells as an indicator of likely challenges for regenerative medicines. Biotechnol Bioeng. 99, 468-474 (2008).
  32. Chin, L. K., et al. Production of reactive oxygen species in endothelial cells under different pulsatile shear stresses and glucose concentrations. Lab Chip. 11, 1856-1863 (2011).
  33. Tsai, H. F., Peng, S. W., Wu, C. Y., Chang, H. F., Cheng, J. Y. Electrotaxis of oral squamous cell carcinoma cells in a multiple-electric-field chip with uniform flow field. Biomicrofluidics. 6, 34116 (2012).
check_url/fr/54397?article_type=t

Play Video

Citer Cet Article
Chou, T., Sun, Y., Hou, H., Wu, S., Zhu, Y., Cheng, J., Lo, K. Designing Microfluidic Devices for Studying Cellular Responses Under Single or Coexisting Chemical/Electrical/Shear Stress Stimuli. J. Vis. Exp. (114), e54397, doi:10.3791/54397 (2016).

View Video