Summary

Djupgående fysiologisk analys av Bestämda cellpopulationer i akut vävnadssnitt av Mouse Vomeronasalorganet

Published: September 10, 2016
doi:

Summary

Here, we describe a physiological approach that allows identification and in-depth analysis of a defined population of sensory neurons in acute coronal tissue slices of the mouse vomeronasal organ using whole-cell patch-clamp recordings.

Abstract

In most mammals, the vomeronasal organ (VNO) is a chemosensory structure that detects both hetero- and conspecific social cues. Vomeronasal sensory neurons (VSNs) express a specific type of G protein-coupled receptor (GPCR) from at least three different chemoreceptor gene families allowing sensitive and specific detection of chemosensory cues. These families comprise the V1r and V2r gene families as well as the formyl peptide receptor (FPR)-related sequence (Fpr-rs) family of putative chemoreceptor genes. In order to understand the physiology of vomeronasal receptor-ligand interactions and downstream signaling, it is essential to identify the biophysical properties inherent to each specific class of VSNs.

The physiological approach described here allows identification and in-depth analysis of a defined population of sensory neurons using a transgenic mouse line (Fpr-rs3-i-Venus). The use of this protocol, however, is not restricted to this specific line and thus can easily be extended to other genetically modified lines or wild type animals.

Introduction

De flesta djur är starkt beroende av deras kemiska sinnen för att interagera med sin omgivning. Luktsinnet spelar en viktig roll för att hitta och utvärdera mat, undvika rovdjur och lokalisera lämpliga parningspartner. I de flesta däggdjur, består luktsystemet minst fyra anatomiskt och funktionellt distinkta perifera delsystem: huvud luktepitel 1,2, den Grueneberg ganglion 3,4, den septal organ Masera 5,6 och Vomeronasalorganet. VNO omfattar perifer sensorisk struktur tillbehöret luktsinne (AOS), som spelar en viktig roll i att upptäcka kemiska signaler som förmedlar information om identitet, kön, social rang och sexuell tillstånd 7-10. VNO är belägen vid basen av nässkiljeväggen precis ovanför gommen. I möss, är det en bilateral blinda sinande röret inneslutna i en brosk kapsel 11-13. Orgeln består av både en halvmåneformad medial sensorisk epitheLium som hyser de VSNs och är av icke-sensoriska delen på den laterala sidan. Mellan de båda epitel ligger en slemfyllda hålrum som är ansluten till näshålan via den smala vomeronasala kanalen 14. En stor lateral blodkärl i den icke-sensoriska vävnad ger en kärlpumpmekanism för att underlätta inträde av relativt stora, mestadels icke-flyktiga molekyler såsom peptider eller små proteiner i VNO lumen genom undertryck 15,16. De strukturella komponenterna i VNO är närvarande vid födseln och orgeln når vuxen storlek strax före puberteten 17. Men om gnagare AOS är redan funktionell i ungdomar är fortfarande föremål för debatt 18-20.

VSNs särskiljs genom både deras epitelial läge och den typ av receptor de uttrycker. VSNs visar en bipolär morfologi med en omyeliniserad axon och ett enda apikala dendrit som skjuter ut i riktning mot lumen och slutar i en microvillous dendritisk knopp. VSN axeons fasciculate att bilda vomeronasala nerv som lämnar brosk kapsel vid dorso-kaudala ände, stiger längs membranet, passerar cribrosa plattan och projekt till tillbehöret luktbulben (AOB) 21,22. Vomeronasala sensoriska epitel består av två skikt: den apikala lagret ligger närmare luminala sidan och hamnar både V1R- och alla utom en typ av FPR-rs-uttryckande nervceller. Dessa nervceller samtidigt uttrycka G-protein α-subenhet G αi2 och projekt till den främre delen av AOB 23-25. Sensoriska neuroner belägna i mer basal lager express V2Rs eller FPR-RS1 tillsammans G αo och skicka sina axoner till den bakre regionen av AOB 26-28.

Vomeronasala nervceller är sannolikt aktiveras av ganska små semiochemicals 29-33 (V1Rs) eller proteinartade föreningar 34-38 (V2Rs) som utsöndras i olika kroppsvätskor såsom urin, saliv och tårvätska 37,39-41 </sup>. In situ experiment har visat att VSNs också aktiveras genom formyleras peptider och olika antimikrobiella / inflammation bundna föreningarna 25,42. Dessutom heterologt uttryckt FPR-rs proteiner delar agonist spektra med FPRs uttrycks i immunsystemet, vilket tyder på en potentiell roll som detektorer för sjukdom i artfränder eller förstörda matkällor 25 (se referens 43).

Grundläggande för att förstå receptor-ligand relationer och nedströms signaleringskaskader i specifika VSN populationer är en detaljerad utvärdering av deras grundläggande biofysikaliska egenskaper i en infödd miljö. I det förflutna, har analysen av cellulära signalerings kraftigt dragit nytta av genetiskt modifierade djur som markerar en definierad population av nervceller genom samuttrycker en fluorescerande markörprotein 30,44-49. I detta protokoll, en transgen mus linje som uttrycker FPR-RS3 tillsammans med en fluorescerande markör (Fpr-RS3-i-Venus) används.Detta tillvägagångssätt exemplifierar hur man använder en sådan genetiskt modifierad musstam för att utföra elektrofysiologiska analys av ett optiskt identifierbar cellpopulation med hjälp av enda neuron patch-clamp inspelningar i akut koronala VNO vävnadssnitt. En tryckluftsdriven flera fat perfusion system för sensoriska stimuli och farmakologiska medel ger snabb, reversibel och fokal neuronal stimulering eller hämning under inspelningar. Helcells-inspelningar i slice förberedelser möjliggör en detaljerad analys av inneboende egenskaper, spänningsaktiverade conductances, liksom handlings potentiella mönster urladdnings i cellens naturliga miljö.

Protocol

Alla djurförsök var i överensstämmelse med lokala och EU: s lagstiftning om skydd av djur som används i experimentellt syfte (direktiv 86/609 / EEG) och med rekommendationer från Federation of European Laboratory Animal Science Associations (FELASA). Både C57BL / 6-möss och Fpr-RS3-i-Venus-möss hölls i grupper av båda könen vid rumstemperatur på en 12 h ljus / mörkercykel med mat och vatten tillgängligt ad libitum. För experiment unga vuxna (6-20 veckor) av endera kön användes. Inga uppenbara …

Representative Results

För att få en inblick i de biofysiska och fysiologiska egenskaper hos definierade cellpopulationer, utför vi akut coronal vävnadssnitt på musen VNO (Figur 1-2). Efter dissektion, kan skivor förvaras i iskall syresatt extracellulär lösning (S 2) för flera timmar. Vid inspelningen setup, en konstant utbyte med färsk syrelösning (Figur 2D) säkerställer vävnad livskraft i hela experimentet. Vi här använder en trans…

Discussion

VNO är en chemosensory struktur som detekterar semiochemicals. Hittills förblir huvuddelen av vomeronasala receptorer som skall deorphanized eftersom endast några receptor-ligand par har identifierats. Bland dem var V1rb2 beskrivits specifikt aktiveras av manliga urin feromon 2-heptanon 30 till V2rp5 aktiveras av manliga specifika feromon ESP1 57 samt V2r1b och V2rf2 att aktiveras av MHC peptiderna SYFPEITHI 48 och SEIDLILGY 58, respektive. En förutsättning för att förs…

Divulgations

The authors have nothing to disclose.

Acknowledgements

We thank Ivan Rodriguez and Benoit von der Weid for generating the FPR-rs3-i-venus mouse line, their constructive criticism and fruitful discussions. This work was funded by grants of the Volkswagen Foundation (I/83533), the Deutsche Forschungsgemeinschaft (SP724/6-1) and by the Excellence Initiative of the German federal and state governments. MS is a Lichtenberg Professor of the Volkswagen Foundation.

Materials

Chemicals
Agarose (low-gelling temperature) PeqLab 35-2030
ATP (Mg-ATP) Sigma-Aldrich A9187
Bis(2-hydroxyethyl)-2-aminoethanesulfonic acid (BES) Sigma-Aldrich B9879
Calcium chloride Sigma-Aldrich C1016
Ethylene glycol tetraacetic acid (EGTA) Sigma-Aldrich E3889
Glucose Sigma-Aldrich G8270
GTP (Na-GTP) Sigma-Aldrich 51120
(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) Sigma-Aldrich H3375
Magnesium chloride Sigma-Aldrich M8266
Potassium chloride Sigma-Aldrich P9333
Potassium hydroxide Sigma-Aldrich 03564
Sodium chloride Sigma-Aldrich S7653
Sodium hydrogen carbonate Sigma-Aldrich S5761
Sodium hydroxide Sigma-Aldrich S8045
Surgical tools and consumables
Large petri dish, 90 mm VWR decapitation, dissection of VNO capsule
Small petri dish, 35 mm VWR lid for VNO dissection, dish for embedding in agarose
Sharp large surgical scissor Fine Science Tools decapitation, removal of lower jaw
Strong bone scissors Fine Science Tools cutting incisors
Medium forceps, Dumont tweezers #2 Fine Science Tools removing skin and palate
Micro spring scissors, 8.5 cm, curved, 7 mm blades  Fine Science Tools cutting out VNO 
Two pairs of fine forceps, Dumont tweezers #5 Fine Science Tools dissecting VNO out of cartilaginous capsule
Small stainless steel spatula Fine Science Tools handling agarose block and tissue slices
Surgical scalpel cutting agarose block into pyramidal shape
Name Company Catalog Number Comments
Equipment
Amplifier HEKA Elektronik EPC-10
Borosilicate glass capillaries (1.50 mm OD/0.86 mm ID) Science Products
CCD-camera Leica Microsystems DFC360FX
Filter cube, excitation: BP 450-490, suppression: LP 515 Leica Microsystems I3
Fluorescence lamp Leica Microsystems EL6000
Hot plate magnetic stirrer Snijders 34532
Microforge  Narishige MF-830
Micromanipulator Device  Luigs & Neumann SM-5
Micropipette puller, vertical two-step Narishige PC-10 
Microscope Leica Microsystems CSM DM 6000 SP5
Noise eliminator 50/60 Hz (HumBug) Quest Scientific
Objective  Leica Microsystems HCX APO L20x/1.00 W
Oscilloscope Tektronik TDS 1001B
Osmometer  Gonotec Osmomat 030
Perfusion system 8-in-1 AutoMate Scientific
pH Meter five easy Mettler Toledo
Pipette storage jar World Precision Instruments e212
Recording chamber  Luigs & Neumann Slice mini chamber
Razor blades Wilkinson Sword GmbH Wilkinson Sword Classic
Oxygenating slice storage chamber; alternative commercial chambers are e.g. BSK1 Brain Slice Keeper (Digitimer) or the Pre-chamber (BSC-PC; Warner Instruments) custom-made
Stereo microscope Leica Microsystems S4E
Trigger interface  HEKA Elektronik TIB-14 S
Vibratome  Leica Microsystems VT 1000 S
Water bath  Memmert WNB 45

References

  1. Firestein, S. How the olfactory system makes sense of scents. Nature. 413 (6852), 211-218 (2001).
  2. Mombaerts, P. Genes and ligands for odorant, vomeronasal and taste receptors. Nat. Rev. Neurosci. 5 (4), 263-278 (2004).
  3. Fuss, S. H., Omura, M., Mombaerts, P. The Grueneberg ganglion of the mouse projects axons to glomeruli in the olfactory bulb. Eur. J. Neurosci. 22 (10), 2649-2654 (2005).
  4. Roppolo, D., Ribaud, V., Jungo, V. P., Lüscher, C., Rodriguez, I. Projection of the Grüneberg ganglion to the mouse olfactory bulb. Eur. J. Neurosci. 23 (11), 2887-2894 (2006).
  5. Adams, D. R. Fine structure of the vomeronasal and septal olfactory epithelia and of glandular structures. Microsc. Res. Tech. 23 (1), 86-97 (1992).
  6. Ma, M., et al. Olfactory signal transduction in the mouse septal organ. J. Neurosci. 23 (1), 317-324 (2003).
  7. Dulac, C., Torello, A. T. Molecular detection of pheromone signals in mammals: from genes to behaviour. Nat. Rev. Neurosci. 4 (7), 551-562 (2003).
  8. Luo, M., Katz, L. C. Encoding pheromonal signals in the mammalian vomeronasal system. Curr. Opin. Neurobiol. 14 (4), 428-434 (2004).
  9. Brennan, P. A., Kendrick, K. M. Mammalian social odours: attraction and individual recognition. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 361 (1476), 2061-2078 (2006).
  10. Tirindelli, R., Dibattista, M., Pifferi, S., Menini, A. From Pheromones to Behavior. Physiol. Rev. 89, 921-956 (2009).
  11. Jacobson, L., Trotier, D., Doving, K. B. Anatomical description of a new organ in the nose of domesticated animals by Ludvig Jacobson (1813). Chem. Senses. 23 (6), 743-754 (1998).
  12. Keverne, E. B. The Vomeronasal Organ. Science. 286 (5440), 716-720 (1999).
  13. Breer, H., Fleischer, J., Strotmann, J. The sense of smell: multiple olfactory subsystems. Cell. Mol. Life Sci. C. 63 (13), 1465-1475 (2006).
  14. Liberles, S. D. Mammalian pheromones. Annu. Rev. Physiol. 76, 151-175 (2014).
  15. Meredith, M., O’Connell, R. J. Efferent control of stimulus access to the hamster vomeronasal organ. J. Physiol. 286, 301-316 (1979).
  16. Pankevich, D., Baum, M. J., Cherry, J. A. Removal of the superior cervical ganglia fails to block Fos induction in the accessory olfactory system of male mice after exposure to female odors. Neurosci. Lett. 345 (1), 13-16 (2003).
  17. Giacobini, P., Benedetto, A., Tirindelli, R., Fasolo, A. Proliferation and migration of receptor neurons in the vomeronasal organ of the adult mouse. Brain Res. Dev. Brain Res. 123 (1), 33-40 (2000).
  18. Coppola, D. M., O’Connell, R. J. Stimulus access to olfactory and vomeronasal receptors in utero. Neurosci. Lett. 106 (3), 241-248 (1989).
  19. Hovis, K. R., et al. Activity Regulates Functional Connectivity from the Vomeronasal Organ to the Accessory Olfactory Bulb. J. Neurosci. 32 (23), 7907-7916 (2012).
  20. Mucignat-Caretta, C. The rodent accessory olfactory system. J. Comp. Physiol. A Neuroethol. Sensory, Neural, Behav. Physiol. 196 (10), 767-777 (2010).
  21. Jia, C., Halpern, M. Subclasses of vomeronasal receptor neurons: differential expression of G proteins (Giα2 and G(αo)) and segregated projections to the accessory olfactory bulb. Brain Res. 719 (1-2), 117-128 (1996).
  22. Del Punta, K., Puche, C. A., Adams, N. C., Rodriguez, I., Mombaerts, P. A divergent pattern of sensory axonal projections is rendered convergent by second-order neurons in the accessory olfactory bulb. Neuron. 35 (6), 1057-1066 (2002).
  23. Belluscio, L., Koentges, G., Axel, R., Dulac, C. A map of pheromone receptor activation in the mammalian brain. Cell. 97 (2), 209-220 (1999).
  24. Rodriguez, I., Feinstein, P., Mombaerts, P. Variable patterns of axonal projections of sensory neurons in the mouse vomeronasal system. Cell. 97 (2), 199-208 (1999).
  25. Rivière, S., Challet, L., Fluegge, D., Spehr, M., Rodriguez, I. Formyl peptide receptor-like proteins are a novel family of vomeronasal chemosensors. Nature. 459 (7246), 574-577 (2009).
  26. Martini, S., Silvotti, L., Shirazi, A., Ryba, N. J. P., Tirindelli, R. Co-expression of putative pheromone receptors in the sensory neurons of the vomeronasal organ. J. Neurosci. 21 (3), 843-848 (2001).
  27. Matsuoka, M., et al. Immunocytochemical study of Gi2alpha and Goalpha on the epithelium surface of the rat vomeronasal organ. Chem. Senses. 26 (2), 161-166 (2001).
  28. Dulac, C., Torello, A. T. Molecular detection of pheromone signals in mammals: from genes to behaviour. Nat. Rev. Neurosci. 4 (7), 551-562 (2003).
  29. Leinders-Zufall, T., et al. Ultrasensitive pheromone detection by mammalian vomeronasal neurons. Nature. 405 (6788), 792-796 (2000).
  30. Boschat, C., et al. Pheromone detection mediated by a V1r vomeronasal receptor. Nat. Neurosci. 5 (12), 1261-1262 (2002).
  31. Novotny, M. V. Pheromones, binding proteins and receptor responses in rodents. Biochem. Soc. Trans. 31, 117-122 (2003).
  32. Nodari, F., et al. Sulfated steroids as natural ligands of mouse pheromone-sensing neurons. J. Neurosci. 28 (25), 6407-6418 (2008).
  33. Isogai, Y., et al. Molecular organization of vomeronasal chemoreception. Nature. 478 (7368), 241-245 (2011).
  34. Leinders-Zufall, T., et al. MHC class I peptides as chemosensory signals in the vomeronasal organ. Science. 306 (5698), 1033-1037 (2004).
  35. Chamero, P., et al. Identification of protein pheromones that promote aggressive behaviour. Nature. 450 (7171), 899-902 (2007).
  36. Kimoto, H., Haga, S., Sato, K., Touhara, K. Sex-specific peptides from exocrine glands stimulate mouse vomeronasal sensory neurons. Nature. 437 (7060), 898-901 (2005).
  37. Ferrero, D. M., et al. A juvenile mouse pheromone inhibits sexual behaviour through the vomeronasal system. Nature. 502 (7471), 368-371 (2013).
  38. Kaur, A. W., et al. Murine pheromone proteins constitute a context-dependent combinatorial code governing multiple social behaviors. Cell. 157 (3), 676-688 (2014).
  39. Ben-Shaul, Y., Katz, L. C., Mooney, R., Dulac, C. In vivo vomeronasal stimulation reveals sensory encoding of conspecific and allospecific cues by the mouse accessory olfactory bulb. PNAS. 107 (11), 5172-5177 (2010).
  40. Kimoto, H., et al. Sex- and strain-specific expression and vomeronasal activity of mouse ESP family peptides. Curr. Biol. 17 (21), 1879-1884 (2007).
  41. Spehr, M., et al. Parallel processing of social signals by the mammalian main and accessory olfactory systems. Cell. Mol. Life Sci. C. 63 (13), 1476-1484 (2006).
  42. Chamero, P., et al. G protein G{alpha}o is essential for vomeronasal function and aggressive behavior in mice. PNAS. , (2011).
  43. Bufe, B., Schumann, T., Zufall, F. Formyl peptide receptors from immune and vomeronasal system exhibit distinct agonist properties. J. Biol. Chem. 287 (40), 33644-33655 (2012).
  44. Bozza, T., Feinstein, P., Zheng, C., Mombaerts, P. Odorant receptor expression defines functional units in the mouse olfactory system. J. Neurosci. 22 (8), 3033-3043 (2002).
  45. Grosmaitre, X., Vassalli, A., Mombaerts, P., Shepherd, G. M., Ma, M. Odorant responses of olfactory sensory neurons expressing the odorant receptor MOR23: a patch clamp analysis in gene-targeted mice. PNAS. 103 (6), 1970-1975 (2006).
  46. Oka, Y., et al. Odorant receptor map in the mouse olfactory bulb: in vivo sensitivity and specificity of receptor-defined glomeruli. Neuron. 52 (5), 857-869 (2006).
  47. Ukhanov, K., Leinders-Zufall, T., Zufall, F. Patch-clamp analysis of gene-targeted vomeronasal neurons expressing a defined V1r or V2r receptor: ionic mechanisms underlying persistent firing. J. Neurophysiol. 98 (4), 2357-2369 (2007).
  48. Leinders-Zufall, T., Ishii, T., Mombaerts, P., Zufall, F., Boehm, T. Structural requirements for the activation of vomeronasal sensory neurons by MHC peptides. Nat. Neurosci. 12 (12), 1551-1558 (2009).
  49. Pacifico, R., Dewan, A., Cawley, D., Guo, C., Bozza, T. An olfactory subsystem that mediates high-sensitivity detection of volatile amines. Cell Rep. 2 (1), 76-88 (2012).
  50. Veitinger, S., et al. Purinergic signalling mobilizes mitochondrial Ca2+ in mouse Sertoli cells. J. Physiol. 589 (Pt 21), 5033-5055 (2011).
  51. Kaur, A. W., et al. Murine pheromone proteins constitute a context-dependent combinatorial code governing multiple social behaviors. Cell. 157 (3), 676-688 (2014).
  52. Ackels, T., von der Weid, B., Rodriguez, I., Spehr, M. Physiological characterization of formyl peptide receptor expressing cells in the mouse vomeronasal organ. Front. Neuroanat. 8, 1-13 (2014).
  53. Liman, E. R., Corey, D. P. Electrophysiological characterization of chemosensory neurons from the mouse vomeronasal organ. J. Neurosci. 16 (15), 4625-4637 (1996).
  54. Cichy, A., et al. Extracellular pH Regulates Excitability of Vomeronasal Sensory Neurons. J. Neurosci. 35 (9), 4025-4039 (2015).
  55. Shimazaki, R., et al. Electrophysiological properties and modeling of murine vomeronasal sensory neurons in acute slice preparations. Chem. Senses. 31 (5), 425-435 (2006).
  56. Hagendorf, S., Fluegge, D., Engelhardt, C., Spehr, M. Homeostatic control of sensory output in basal vomeronasal neurons: activity-dependent expression of ether-à-go-go-related gene potassium channels. J. Neurosci. 29 (1), 206-221 (2009).
  57. Haga, S., et al. The male mouse pheromone ESP1 enhances female sexual receptive behaviour through a specific vomeronasal receptor. Nature. 466 (7302), 118-122 (2010).
  58. Leinders-Zufall, T., et al. A family of nonclassical class I MHC genes contributes to ultrasensitive chemodetection by mouse vomeronasal sensory neurons. J. Neurosci. 34 (15), 5121-5133 (2014).
  59. Jinek, M., et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 337, 816-821 (2012).
check_url/fr/54517?article_type=t

Play Video

Citer Cet Article
Ackels, T., Drose, D. R., Spehr, M. In-depth Physiological Analysis of Defined Cell Populations in Acute Tissue Slices of the Mouse Vomeronasal Organ. J. Vis. Exp. (115), e54517, doi:10.3791/54517 (2016).

View Video