Summary

从成年小鼠的分离,培养和窦房结肌细胞的功能分析方法

Published: October 23, 2016
doi:

Summary

方法证实,用于从膜片钳电生理学或成像研究成年小鼠窦房结细胞(自组装膜)的分离。分离的细胞可以直接使用,也可以在培养物中保持,以允许所关注的蛋白质,如遗传编码的记者的表达。

Abstract

窦房结细胞(SAMS)作为心脏的起搏器自然,倡导通过产生自发的动作电位(APS)击败每一个心脏。这些起搏器的AP反映许多膜电流和细胞内钙循环的协调活动。然而,推动自发起搏器活动地对空导弹的确切机制仍然难以实现。急性分离的地对空导弹是实验解剖心脏起搏的分子基础的必要准备。然而,模糊的解剖,显微解剖复杂和挑剔的酶消化条件阻碍了广泛使用急性分离地对空导弹。此外,方法无法获得直到最近允许地对空导弹的长期培养的蛋白表达研究。在这里,我们提供了地对空导弹从成年小鼠中分离了一步一步的协议和视频演示。方法也证明了体外和expressi维持成年小鼠地对空导弹通过对腺病毒感染外源性蛋白质。急性分离,并通过这些方法制备培养的地对空导弹是适用于各种电生理和影像学检查。

Introduction

在心脏的窦房结起搏细胞(窦房结细胞“地对空导弹”)产生自发的,有节奏的动作电位(APS),通过心肌传播发起每次心跳。使用急性分离地对空导弹许多种实验已经为有助于心脏起搏器活动的产生机制,阐明至关重要。地空导弹是从他们的心房和心室肌同行中的形态,功能和表达方面有很大不同高度专业化的心肌细胞。在自组装膜自发的AP的标志是舒张驱动的膜电位向阈值,以触发下一个AP 1,2-期间自发去极化。这种“起搏器势”取决于许多不同的膜电流包括“滑稽电流”(我f)中 ,T型和L型钙电流,钠钙交换CURR的协调活动耳鼻喉科(ⅠNCX),这是由释放从肌质网3,4驱动。

虽然急性分离的小鼠地对空导弹是起搏的研究必不可少的实验准备,地空导弹的小鼠隔离可以通过一个具有挑战性的方法,因为鼠标SAN的模糊的解剖和小尺寸需要细致入微的显微切割和组合的酶和机械细胞解离需要仔细优化。

在这里,我们提供已被成功地用于从膜片钳记录5-8成年小鼠隔离地对空导弹的协议的详细视频演示。据我们所知,没有这样的视觉可从任何其他来源的示范。此外,一个新的方法,证明了在该分离的SAM从成年小鼠可在体外维持数天,由此允许引入蛋白质,基因编码通过腺病毒感染9报告分子或RNAi。

Protocol

所有的动物程序符合由美国科罗拉多州安舒茨医学校区的大学机构动物护理和使用委员会批准的方案进行。标准协议下一直使用雄性C57BL / 6J小鼠的2-3个月的年龄进行了优化。 1.准备解决库存和用品在实验中的研究进展注:请参阅材料表进行必要的设备和用品。 全台氏,低钙 /镁离子台氏,卡夫改良,Brühe(KB)解决方…

Representative Results

这里所描述的协议已被预先采用自发活性的SAM从成年小鼠适合于各种不同的膜片钳研究5-8的隔离。此外,该协议允许,可以在培养物中维持长达一周孤立的SAM。基因转移到培养的细胞可以通过腺病毒感染9来完成。在本节介绍的结果我们以前的工作中获得,并在这里显示为急性分离培养地对空导弹的特点例子。 …

Discussion

本文提出了从成年小鼠完全分化的窦房结细胞的分离和培养的详细协议。隔离协议可靠生产适合要么直接电生理分析或随后的培养自发活动的鼠标地对空导弹。类似的协议已经报道许多其它基团(例如,参见参考文献11,12,10,13-17)。然而,我们的用于体外维持成年小鼠的SAM协议保留特性形态,自发活动,细胞的电生理特性,并允许蛋白9的腺病毒递送。

?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

We thank Dr. Christian Rickert for critical reading of the manuscript. This work was supported by a grant from the National Heart Lung and Blood Institute (R01-HL088427) to CP. EJS was supported by 5T32-AG000279 from the National Institute on Aging. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Materials

Sylgruard/Elastomer Kit Dow Corning 184 SIL ELAST KIT 0.5KG
Borosilicate 9" pasteur pipettes Fisher Scientific 13-678-20C
Small, round bottomed culture tubes Fisher Scientific 352059
Large, round bottomed culture tubes Corning 14-959-11B
Elastase Worthington Biochemical LS002279
Liberase TM Roche 5401119001  Tissue dissociation solution
Heparin SAGENT Pharmaceuticals  NDC 25021-400-10
Mouse Laminin Corning CB-354232
12 mm round glass coverslips Fisher  12-545-80
24-well culture plate Fisher 08-772-1
Ad-mCherry Vector Biolabs 1767
Ad-eGFP Vector Biolabs 1060
Plastic, disposable transfer pipette Fisher Scientific
Micro scissors Fisher Scientific 17-467-496
Dumont #4 Forceps Roboz Instruments RS-4904
Tissue Forceps Roboz Instruments RS-8164
Dissecting Iris Scissors WPI, Inc. 501264
Dissecting Pins Fine Science Tools 26002-20
NaCl Sigma 71376
KCl Sigma 60128
KH2PO4 Sigma 60353
HEPES Sigma 54457
glucose Sigma G0350500
MgCl2 Sigma M8266
CaCl2 Sigma C1016
taurine Sigma T0625
BSA Sigma A2153
K-glutamate Sigma G1501
K-aspartate Sigma A6558
MgSO4 Sigma M7506
creatine Sigma C0780
EGTA Sigma E3889
Mg-ATP Sigma A9187
Amphotericin-B Fisher Scientific 1397-89-3
Isoproterenol Calbiochem 420355
Media199 Sigma M4530
2,3-butanedione monoxime (BDM) Sigma B0753
Fetal Bovine Serum (FBS) Sigma SH30071
Bovine Serum Albumin (BSA) Sigma A5611
Insulin   Sigma I3146
Transferrin Sigma I3146
Selenium Sigma I3146
Penicillin GE Healthcare SV30010
Streptomycin Hyclone SV30010

References

  1. Irisawa, H., Noma, A. Pacemaker currents in mammalian nodal cells. J Mol Cell Cardiol. 16 (9), 777-781 (1984).
  2. DiFrancesco, D. Pacemaker mechanisms in cardiac tissue. Annu Rev Physiol. 55, 455-472 (1993).
  3. Mangoni, M., Nargeot, J. Genesis and regulation of the heart automaticity. Physiol Rev. 88 (3), 919-982 (2008).
  4. Lakatta, E. G., DiFrancesco, D. What keeps us ticking: a funny current, a calcium clock, or both. J Mol Cell Cardiol. 47 (2), 157-170 (2009).
  5. Liao, Z., Lockhead, D., Larson, E., Proenza, C. Phosphorylation and modulation of hyperpolarization-activated HCN4 channels by protein kinase A in the mouse sinoatrial node. J Gen Physiol. 136 (3), 247-258 (2010).
  6. Liao, Z., St Clair, J. R., Larson, E. D., Proenza, C. Myristoylated peptides potentiate the funny current (I(f)) in sinoatrial myocytes. Channels. 5 (2), 115-119 (2011).
  7. Larson, E. D., Clair, J. R. S., Sumner, W. A., Bannister, R. A., Proenza, C. Depressed pacemaker activity of sinoatrial node myocytes contributes to the age-dependent decline in maximum heart rate. Proc Nat Acad Sci. 110 (44), 18011-18016 (2013).
  8. St. Clair, J. R., Liao, Z., Larson, E. D., Proenza, C. PKA-independent activation of I(f) by cAMP in mouse sinoatrial myocytes. Channels. 7 (4), 318-321 (2013).
  9. St. Clair, J. R., Sharpe, E. J., Proenza, C. Culture and adenoviral infection of sinoatrial node myocytes from adult mice. Am J Physiol Heart Circ Physiol. , (2015).
  10. Clark, R. B., Mangoni, M. E., Lueger, A., Couette, B., Nargeot, J., Giles, W. R. A rapidly activating delayed rectifier K+ current regulates pacemaker activity in adult mouse sinoatrial node cells. Am J Physiol Heart Circ Physiol. 286 (5), H1757-H1766 (2004).
  11. Mangoni, M., Nargeot, J. Properties of the hyperpolarization-activated current (I(f)) in isolated mouse sino-atrial cells. Cardiovasc Res. 52 (1), 51-64 (2001).
  12. Cho, H. S., Takano, M., Noma, A. The electrophysiological properties of spontaneously beating pacemaker cells isolated from mouse sinoatrial node. J Physiol. 550 (Pt 1), 169-180 (2003).
  13. Rose, R. A., Lomax, A. E., Kondo, C. S., Anand-Srivastava, M. B., Giles, W. R. Effects of C-type natriuretic peptide on ionic currents in mouse sinoatrial node: a role for the NPR-C receptor. Am J Physiol Heart Circ Physiol. 286 (5), H1970-H1977 (2004).
  14. Rose, R. A., Kabir, M. G., Backx, P. H. Altered Heart Rate and Sinoatrial Node Function in Mice Lacking the cAMP Regulator Phosphoinositide 3-Kinase-gamma. Circ Res. 101 (12), 1274-1282 (2007).
  15. Hua, R., Adamczyk, A., Robbins, C., Ray, G., Rose, R. Distinct patterns of constitutive phosphodiesterase activity in mouse sinoatrial node and atrial myocardium. PloS ONE. 7 (10), e47652 (2012).
  16. Groenke, S., Larson, E. D., et al. Complete atrial-specific knockout of sodium-calcium exchange eliminates sinoatrial node pacemaker activity. PloS ONE. 8 (11), e81633 (2013).
  17. Torrente, A. G., Zhang, R., et al. Burst pacemaker activity of the sinoatrial node in sodium-calcium exchanger knockout mice. Proc Nat Acad Sci USA. 112 (31), 9769-9774 (2015).
  18. Denyer, J. C., Brown, H. F. Rabbit sino-atrial node cells: isolation and electrophysiological properties. J Physiol. 428 (1), 405-424 (1990).
  19. Thum, T., Borlak, J. Butanedione monoxime increases the viability and yield of adult cardiomyocytes in primary cultures. Cardiovasc Toxicol. 1 (1), 61-72 (2001).
  20. Borlak, J., Zwadlo, C. The myosin ATPase inhibitor 2,3-butanedione monoxime dictates transcriptional activation of ion channels and Ca(2+)-handling proteins. Molec Pharmacol. 66 (3), 708-717 (2004).
check_url/fr/54555?article_type=t

Play Video

Citer Cet Article
Sharpe, E. J., St. Clair, J. R., Proenza, C. Methods for the Isolation, Culture, and Functional Characterization of Sinoatrial Node Myocytes from Adult Mice. J. Vis. Exp. (116), e54555, doi:10.3791/54555 (2016).

View Video